Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Tetraiodoallene, I2C=C=CI2 – the missing link between I2C=CI2 and I2C=C=C=CI2 – and the oxidation product, 2,2-diiodoacrylicacid, I2C=CH(CO2H)*

Michael I. Bruce A D , Nicholas J. Head A , Brian W. Skelton B , Mark A. Spackman B and Allan H. White B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

B Chemistry M313, School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia.

C Deceased.

D Corresponding author. Email: michael.bruce@adelaide.edu.au

Australian Journal of Chemistry 71(1) 70-73 https://doi.org/10.1071/CH17348
Submitted: 30 June 2017  Accepted: 3 September 2017   Published: 6 October 2017

Abstract

The X-ray structure of tetraiodoallene is reported. On standing, atmospheric hydrolysis converts this compound into 2,2-diiodoacrylic acid, for which a structure has also been determined. Energy framework diagrams have been constructed for the two compounds.


References

[1]  (a) P. J. Low, Dalton Trans. 2005, 2821.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntlSis74%3D&md5=b2d66eed0542ca920edcac3ed580cdeeCAS |
      (b) P. J. Low, N. J. Brown, J. Cluster Sci. 2010, 21, 235.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Marqués-Gonzalez, P. J. Low, Aust. J. Chem. 2016, 69, 244.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  S. Rigaut, Dalton Trans. 2013, 42, 15859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs12mur%2FP&md5=8dd1baae2d88b8918e9b6e49f304fb75CAS |

[3]  C. J. Lambert, Chem. Soc. Rev. 2015, 44, 875.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitlyisbw%3D&md5=28c0b0834f935504c3ba8cd3c5eb57beCAS |

[4]  (P21/c form): R. D. Bailey, L. L. Hook, R. P. Watson, T. W. Hanks, W. T. Pennington, Cryst. Eng. 2000, 3, 155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvF2ksbc%3D&md5=7219afc2436899699a6ee319a69eaadaCAS |

[5]  (P21/n form): H. Bock, S. Holl, V. Krenzel, Z. Naturforsch. 2001, 56b, 13.

[6]  The Cambridge Crystallographic Data Centre (CCDC) also contains 14 structures of C2I4 as adducts with (mainly) nitrogen heterocycles, but also with 1,4-dioxane, 1,4-diselenane, and [PPh4]NCS.

[7]  K. Baum, S. S. Bigelow, N. V. Nguyen, T. G. Archibald, R. Gilardi, J. L. Flippen- Anderson, K. Baum, S. S. Bigelow, N. V. Nguyen, T. G. Archibald, R. Gilardi, J. L. Flippen- Anderson, J. Org. Chem. 1992, 57, 235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktFeqsQ%3D%3D&md5=7fe92acb67e5114ebc6d2296c20965f0CAS |

[8]  (a) F. Cataldo, Fullerene Sci. Technol. 2001, 9, 525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVKjtLw%3D&md5=cb322d1c088a9ab996a480c76b8b67a3CAS |
      (b) F. Cataldo, O. Ursini, G. Angelini, M. Tommasini, C. Casari, J. Macromol. Sci.: Pure Appl. Chem. 2010, 47, 739.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  C. Perkins, S. Libri, H. Adams, L. Brammer, CrystEngComm 2012, 14, 3033.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFSguro%3D&md5=dde95a0ec96ea2e9c7169553e3d1dcddCAS |

[10]  J. A. Webb, P.-H. Liu, O. L. Malkina, N. S. Goroff, Angew. Chem. Int. Ed. 2002, 41, 3011.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslSrt7s%3D&md5=5139fb05f9f34849fa1e498b4d71885eCAS |

[11]  K. Gao, N. S. Goroff, J. Am. Chem. Soc. 2000, 122, 9320.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1Knsr4%3D&md5=4561bde36ced29becabf7f37a485870bCAS |

[12]  M. I. Bruce, B. K. Nicholson, N. N. Zaitseva, Chem. Commun. 2009, 1280.
         | 1:CAS:528:DC%2BD1MXhsFWmu7%2FN&md5=5100c68ec3712a31f130579aa498df8cCAS |

[13]  M. I. Bruce, M. L. Cole, B. G. Ellis, M. Gaudio, B. K. Nicholson, C. R. Parker, B. W. Skelton, A. H. White, Polyhedron 2015, 86, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVemsbnE&md5=86139fe512bbf2f25d12f52c1c9d8782CAS |

[14]  K. B. Vincent, B. G. Gluyas, S. Guckel, Q. Zeng, F. Hartl, M. Kaupp, P. J. Low, J. Organomet. Chem. 2016, 821, 40.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnslWktLk%3D&md5=35eee680e18772339c1b953433c47615CAS |

[15]  (a) M. I. Bruce, N. N. Zaitseva, B. K. Nicholson, B. W. Skelton, A. H. White, J. Organomet. Chem. 2008, 693, 2887.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFyhsLo%3D&md5=e44e75115a64902983dcdc87bb10fa68CAS |
      (b) A. B. Antonova, M. I. Bruce, B. G. Ellis, M. Gaudio, P. A. Humphrey, M. Jevric, G. Melino, B. K. Nicholson, G. J. Perkins, B. W. Skelton, A. H. White, N. N. Zaitseva, Chem. Commun. 2004, 960.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) F. Kai, S. Seki, Chem. Pharm. Bull. 1965, 13, 1374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XjsFaruw%3D%3D&md5=02098bae71bfc0b3f537c502d0cae998CAS |
      (b) F. Kai, S. Seki, Chem. Pharm. Bull. 1966, 14, 1122.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  E. T. Bogoradovskii, V. S. Zavgorodnii, E. Liepins, A. A. Petrov, Zhur. Obshch. Khim. 1991, 61, 1430.
         | 1:CAS:528:DyaK38XitFWktw%3D%3D&md5=dbfcf5678357ef9b7532f7f5d6bce733CAS |

[18]  A. M. Snider, P. F. Krause, F. A. Miller, J. Phys. Chem. 1976, 80, 1262.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XktFajsb8%3D&md5=8e2001d202016b9c014f52d57fec936cCAS |

[19]  G. Diaz, Spectrosc. Lett. 1981, 14, 347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXkvVygsr8%3D&md5=dcb5b36ac90010ab302f64172c62737eCAS |

[20]  E. Masuda, K. Nishida, Yakugaku Zasshi 1934, 54, 1091.[Chem. Abstr. 29, 25601]
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2MXisFKjsw%3D%3D&md5=6bbfcc0afb51d330df4aa05ab3b1f15aCAS |

[21]  F. X. Woolard, R. E. Moore, P. P. Roller, Phytochemistry 1979, 18, 617.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlslWlsL0%3D&md5=209d1f80877c46ca5e6aef727dd5cdb6CAS |

[22]  M. J. Turner, S. P. Thomas, M. W. Shi, D. Jayatilaka, M. A. Spackman, Chem. Commun. 2015, 51, 3735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFehtrnE&md5=c82d9167b73f01d5eb4e07c4f8f92a8fCAS |

[23]  M. J. Turner, S. Grabowsky, D. Jayatilaka, M. A. Spackman, J. Phys. Chem. Lett. 2014, 5, 4249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFOhtr3N&md5=a84d1124a4b304d2c213023e941016e6CAS |

[24]  C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, M. A. Spackman, IUCrJ 2017, 4, 575.
         | 1:CAS:528:DC%2BC2sXhsVGku7rI&md5=e4928a0a7f643a8a3665e5cac2942e90CAS |

[25]  M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, CrystalExplorer17 2017, University of Western Australia. Available at: http://hirshfeldsurface.net

[26]  This report is item 10 in the reference answer set resulting from a search in SciFinder for ‘C3I4’ (accessed 31 July 2017).

[27]  G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.