Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

A Potentiometric Sensor for pH Monitoring with an Integrated Electrochromic Readout on Paper

Edith Chow A D , Devi D. Liana A B , Burkhard Raguse A and J. Justin Gooding B C
+ Author Affiliations
- Author Affiliations

A CSIRO Manufacturing, PO Box 218, Lindfield, NSW 2070, Australia.

B School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.

C Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW 2052, Australia.

D Corresponding author. Email: edith.chow@csiro.au

Australian Journal of Chemistry 70(9) 979-984 https://doi.org/10.1071/CH17191
Submitted: 7 April 2017  Accepted: 26 May 2017   Published: 22 June 2017

Abstract

Paper-based potentiometric pH sensors allow multiple measurements to be recorded in a cost-effective manner but usually in combination with an external display unit. In this work, a potentiometric pH sensor is integrated with an electrochromic readout system all on paper. The potentiometric pH sensor is based on electropolymerised aniline on a conductive gold nanoparticle film working electrode. The voltage output of the sensor is amplified using an operational amplifier and generated across an electrochromic readout system. The readout system comprises four segments of electrochromic Prussian blue/polyaniline on conductive gold nanoparticle films connected by graphite resistive separators. The colour of each segment is dependent on the voltage output from the potentiometric sensor and can be used to determine the pH range of a sample or whether the sample pH falls outside a critical value. This type of integrated paper device can be used for multiple measurements and also be applied to the development of other types of potentiometric sensors.


References

[1]  R. Rahimi, M. Ochoa, T. Parupudi, X. Zhao, I. K. Yazdi, M. R. Dokmeci, A. Tamayol, A. Khademhosseini, B. Ziaie, Sens. Actuators B 2016, 229, 609.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xis1Ghs74%3D&md5=9ae8de98d0a3ff9eee6da08e7c7630bcCAS |

[2]  J. R. Sharpe, S. Booth, K. Jubin, N. R. Jordan, D. J. Lawrence-Watt, B. S. Dheansa, J. Burn Care Res. 2013, 34, e201.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  T. Guinovart, G. Valdés‐Ramírez, J. R. Windmiller, F. J. Andrade, J. Wang, Electroanalysis 2014, 26, 1345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlSis7o%3D&md5=99225239729cf12d671df114ca431f9eCAS |

[4]  T. R. Dargaville, B. L. Farrugia, J. A. Broadbent, S. Pace, Z. Upton, N. H. Voelcker, Biosens. Bioelectron. 2013, 41, 30.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyhsb7O&md5=e84b9c52aa325f2bcfce590d16fb4754CAS |

[5]  O. Erkmen, T. F. Bozoglu, Food Microbiology: Principles into Practice 2016 (John Wiley & Sons: Hoboken, NJ).

[6]  J. Bobacka, A. Ivaska, A. Lewenstam, Chem. Rev. 2008, 108, 329.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsl2qtA%3D%3D&md5=7601181eaf97e356b0ef5c7c803d54a3CAS |

[7]  E. Bakker, E. Pretsch, Trends Analyt. Chem. 2008, 27, 612.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlKlu78%3D&md5=cfb1253f84e8e39c68c1e532d4257639CAS |

[8]  A. Bratov, N. Abramova, A. Ipatov, Anal. Chim. Acta 2010, 678, 149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Cgt73M&md5=9b33aeefbef1f9dae80908a7f14b491bCAS |

[9]  A. W. Martinez, S. T. Phillips, M. J. Butte, G. M. Whitesides, Angew. Chem. Int. Ed. 2007, 46, 1318.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1als7s%3D&md5=918a16b753b0eea8b23bff2b38d826a3CAS |

[10]  D. M. Cate, J. A. Adkins, J. Mettakoonpitak, C. S. Henry, Anal. Chem. 2015, 87, 19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVyhtbrP&md5=740e31cdb98631bd854f6a81e18ee10bCAS |

[11]  D. D. Liana, B. Raguse, J. J. Gooding, E. Chow, Sensors 2012, 12, 11505.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSjsrvK&md5=09739c14b7ddd221bc2fa60ab2cab1e1CAS |

[12]  S. K. Mahadeva, K. Walus, B. Stoeber, ACS Appl. Mater. Interfaces 2015, 7, 8345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjvFygsbY%3D&md5=929d6cddf9df596bff6a8a03cff92fa8CAS |

[13]  M. Novell, M. Parrilla, G. A. Crespo, F. X. Rius, F. J. Andrade, Anal. Chem. 2012, 84, 4695.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFCrsb0%3D&md5=405d21b6b7e05d6b5e9baabe066eb02cCAS |

[14]  A. J. Bandodkar, V. W. Hung, W. Jia, G. Valdés-Ramírez, J. R. Windmiller, A. G. Martinez, J. Ramírez, G. Chan, K. Kerman, J. Wang, Analyst 2013, 138, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslequ7bP&md5=177a1da81704c1962d3f95d0b81fbb07CAS |

[15]  H. Liu, R. M. Crooks, Anal. Chem. 2012, 84, 2528.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XislWjs70%3D&md5=063c0e2374b1588bd5015d6928140b1bCAS |

[16]  M. A. Pellitero, A. Guimera, M. Kitsara, R. Villa, C. Rubio, B. Lakard, M.-L. Doche, J.-Y. Hihn, F. J. del Campo, Chem. Sci. 2017, 8, 1995.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFCiu7%2FN&md5=bbbee210323dcf01150a048f71ef5c16CAS |

[17]  D. D. Liana, B. Raguse, J. J. Gooding, E. Chow, Adv. Mater. Technol. 2016, 1, 1600143.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  D. D. Liana, B. Raguse, J. J. Gooding, E. Chow, Anal. Methods 2017, 9, 66.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFGgu73I&md5=99aba30f6ded959e5c1c4980e970962fCAS |

[19]  T. Lindfors, S. Ervelä, A. Ivaska, J. Electroanal. Chem. 2003, 560, 69.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFGit7s%3D&md5=144f1ee9c0d74ce42b381c9c143120afCAS |

[20]  T. Lindfors, A. Ivaska, J. Electroanal. Chem. 2002, 531, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslOjsrs%3D&md5=8e4c248ecf36bd08a80df7c7133ca01eCAS |

[21]  D. D. Liana, B. Raguse, J. J. Gooding, E. Chow, ACS Appl. Mater. Interfaces 2015, 7, 19201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlOntL%2FO&md5=612cb6eca584065508c02683318a56eeCAS |

[22]  D. D. Liana, B. Raguse, L. Wieczorek, G. R. Baxter, K. Chuah, J. J. Gooding, E. Chow, RSC Adv. 2013, 3, 8683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvV2hs7k%3D&md5=e5bb0631e0850f0633ff205f7fd7f3beCAS |

[23]  T. Guinovart, G. A. Crespo, F. X. Rius, F. J. Andrade, Anal. Chim. Acta 2014, 821, 72.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlt1Wgs7w%3D&md5=b1f19db985d7bc170de2676059ac9f10CAS |

[24]  M. Parrilla, R. Cánovas, I. Jeerapan, F. J. Andrade, J. Wang, Adv. Healthcare Mater. 2016, 5, 996.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjvVyku7s%3D&md5=644fa7f82617344392a426abf39c2e5dCAS |

[25]  M. Glanc, M. Sophocleous, J. Atkinson, E. Garcia-Breijo, Sens. Actuators A 2013, 197, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotlyiur8%3D&md5=1e02792b2c500d3070818f998fad2680CAS |