Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Electropolymerisation of N-Ethylanilinium Trifluoroacetate Ionic Liquid into Poly(N-Ethylaniline) and Control of its Morphology

Muhammad E. Abdelhamid A B D , Graeme A. Snook A E , Tamar L. Greaves B and Anthony P. O’Mullane C
+ Author Affiliations
- Author Affiliations

A Mineral Resources, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Private Bag 10, Clayton South, Vic. 3169, Australia.

B School of Science, RMIT University, Melbourne, Vic. 3001, Australia.

C School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia.

D Current address: Department of Physics, Chalmers University of Technology, Gothenburg 41296, Sweden.

E Corresponding author. Email: Graeme.snook@csiro.au

Australian Journal of Chemistry 70(9) 985-989 https://doi.org/10.1071/CH17258
Submitted: 12 May 2017  Accepted: 29 May 2017   Published: 28 June 2017

Abstract

In this paper, the electropolymerisation of pre-synthesised N-ethylanilinium trifluoroacetate, a protic ionic liquid (PIL), was carried out. The PIL served as the monomer precursor, solvent, and supporting electrolyte for the polymerisation process, and no additional acid was required due to the protic nature of the PIL. Two different morphologies of the poly(N-ethylaniline) were achieved by using different electropolymerisation approaches and the resultant films were soluble in the PIL precursor as well as a wide range of organic solvents. The use of anilinium based PILs, as polymerisation precursors, promises a greener approach for the production of polyanilines, as well as highly processable polymers.


References

[1]  M. E. Abdelhamid, A. P. O’Mullane, G. A. Snook, RSC Adv. 2015, 5, 11611.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsFynsw%3D%3D&md5=8b9653b38a34900e7ca6cc5e61bb497dCAS |

[2]  K. Shah, J. Iroh, Synth. Met. 2002, 132, 35.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xoslahsr0%3D&md5=04f14587fba8dcc8fa8682e7b9e4dda3CAS |

[3]  A. Kapil, M. Taunk, S. Chand, Synth. Met. 2009, 159, 1267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVaiu7w%3D&md5=f4603737a7a61d224bd285002a1bb8e1CAS |

[4]  M. E. Abdelhamid, G. A. Snook, A. P. O’Mullane, ChemPlusChem 2015, 80, 74.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVWmsLY%3D&md5=dab5a6205c46309b0124cf99c41e8294CAS |

[5]  B. Winther-Jensen, O. Winther-Jensen, M. Forsyth, D. R. MacFarlane, Science 2008, 321, 671.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVKnur0%3D&md5=2951cdc0eda89e6a547111bc02849086CAS |

[6]  G. A. Snook, A. I. Bhatt, M. E. Abdelhamid, A. S. Best, Aust. J. Chem. 2012, 65, 1513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSmtrnE&md5=af6c7f06ad33db0a9c3fa48101647668CAS |

[7]  G. A. Snook, T. L. Greaves, A. S. Best, J. Mater. Chem. 2011, 21, 7622.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFent7k%3D&md5=46238e238d8568964456a66f35a04a3cCAS |

[8]  A. Krishna, C. Laslau, G. I. N. Waterhouse, Z. D. Zujovic, J. Travas-Sejdic, Chem. Pap. 2013, 67, 995.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFOjtbg%3D&md5=e86ccbfe68b536b951cfbfe17d99a182CAS |

[9]  B. Y. Liu, D. Q. Xu, Z. Y. Xu, Chin. J. Chem. 2005, 23, 803.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVehur4%3D&md5=92d4d79b81127107b71e361dabcd0e8fCAS |

[10]  Q. F. Shi, Y. Zhang, G. L. Jing, J. Q. Kan, Iran. Polym. J. 2007, 16, 337.
         | 1:CAS:528:DC%2BD2sXhtVOrsL%2FP&md5=a24f1c134f7c193d52b1e9734d74d720CAS |

[11]  D. S. Patil, S. A. Pawar, S. K. Patil, P. P. Salavi, S. S. Kolekar, R. S. Devan, Y. R. Ma, J. H. Kim, J. C. Shin, P. S. Patil, J. Alloys Compd. 2015, 646, 1089.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVSjtL%2FE&md5=b68b9179b264169b0f484432aec595beCAS |

[12]  Z. J. Miao, Y. Wang, Z. M. Liu, J. Huang, B. X. Han, Z. Y. Sun, J. M. Du, J. Nanosci. Nanotechnol. 2006, 6, 227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFansrc%3D&md5=cbc6b268d819f1af617d3212a933f93dCAS |

[13]  X. J. Lu, H. Dou, D. Chen, Acta Polym. Sin. 2009, 9, 385.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  D. Pahovnik, E. Zagar, J. Vohlidal, M. Zigon, Synth. Met. 2010, 160, 1761.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFWjtr4%3D&md5=82ebeeaf7002f304b93639f43cbc6ac3CAS |

[15]  C. M. Correa, R. Faez, M. A. Bizeto, F. F. Camilo, RSC Adv. 2012, 2, 3088.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Crsb0%3D&md5=8449c8f1f88143ca113a305aeb60c486CAS |

[16]  E. Margaretta, C. Olmeda, L. Yu, J. Appl. Polym. Sci. 2013, 127, 2453.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFCgsL4%3D&md5=81ec0d45faf270d4934d6c7dd867b152CAS |

[17]  F. Zou, X. Yu, J. Zhang, N. Cheng, X. Huang, Synth. Met. 2015, 204, 76.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltFeltb8%3D&md5=09793d23374bc04f670dcb67e06267abCAS |

[18]  M. E. Abdelhamid, G. A. Snook, A. P. O’Mullane, Langmuir 2016, 32, 8834.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlKnurrI&md5=489519df32347092d57740bcccf8aaa3CAS |

[19]  M. E. Abdelhamid, T. Murdoch, T. L. Greaves, A. P. O’Mullane, G. A. Snook, Phys. Chem. Chem. Phys. 2015, 17, 17967.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVynsbvF&md5=a2d866a5a1fde8bb78a0f3d25a03a2ebCAS |

[20]  E. M. Geniès, M. Lapkowski, J. F. Penneau, J. Electroanal. Chem. Interfacial Electrochem. 1988, 249, 97.
         | Crossref | GoogleScholarGoogle Scholar |