Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Microwave-Assisted Conversion of Fructose to 5-Hydroxymethylfurfural Using Sulfonated Porous Carbon Derived from Biomass

Qiufeng Wang A , Jiaqi Hao A and Zhenbo Zhao A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin 130012, China.

B Corresponding author. Email: zhaozhenbo@ccut.edu.cn

Australian Journal of Chemistry 71(1) 24-31 https://doi.org/10.1071/CH17154
Submitted: 13 March 2017  Accepted: 7 August 2017   Published: 5 September 2017

Abstract

In this study, a series of sulfonated carbon solid acid catalysts was prepared by a template method using fructose as the carbon source and zinc chloride as the catalyst and template. The reaction involving fructose dehydration to 5-hydroxymethylfurfural (5-HMF) was investigated using these catalysts with microwave assistance in dimethyl sulfoxide. The influence of different catalysts, catalyst amount, microwave power, fructose content, and reaction temperature, as well as the reusability of the catalyst, were investigated. The prepared catalysts were characterised by X-ray diffraction, FT-IR spectroscopy, scanning electron microscopy, nitrogen adsorption–desorption measurement, and temperature-programmed desorption of ammonia gas, and the total numbers of surface acid sites of these carbon-based solid acid catalysts were analysed by chemical adsorption–desorption of ammonia along with the standard curve for ammonia. The results revealed that the C2-SO3H catalyst exhibited the best activity. A 5-HMF yield of 87 % and fructose conversion of 99 % were achieved at 170°C in DMSO after 3 min. The microwave-assisted synthetic strategy was advantageous compared with the traditional method because this approach could shorten the total reaction time.


References

[1]  D. A. Kotadia, S. S. Soni, Catal. Sci. Technol. 2013, 3, 469.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXns1CqsQ%3D%3D&md5=c6b3e4258567ea3b78366e1084372036CAS |

[2]  P. Zhou, Z. Zhang, Catal. Sci. Technol. 2016, 6, 3694.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmvFars7g%3D&md5=b639e45af37fb915661f2e0bbedcd9a3CAS |

[3]  J. J. Bozell, G. R. Petersen, Green Chem. 2010, 12, 539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1GrtLs%3D&md5=f791c79ac74b0aebb2ef43d3cc9d5311CAS |

[4]  R. J. van Putten, J. C. van der Waal, E. D. De Jong, Chem. Rev. 2013, 113, 1499.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Ght7g%3D&md5=04d20fb8a49721c204c24b9d377174eaCAS |

[5]  T. Wang, M. W. Nolte, B. H. Shanks, Green Chem. 2014, 16, 548.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlaiurs%3D&md5=9ff355e36bfbbd8fb752e5e32605e168CAS |

[6]  S. Siankevich, G. Savoglidis, Z. Fei, J. Catal. 2014, 315, 67.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVWrt73F&md5=9398d302c92e82edc4b759bf3dd0f1aaCAS |

[7]  N. Mittal, G. M. Nisola, L. B. Malihan, Korean J. Chem. Eng. 2014, 31, 1362.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1Knt78%3D&md5=10f9222568b15300901e9dca7bbd1c4cCAS |

[8]  Z. Zhang, B. Liu, K. Lv, Green Chem. 2014, 16, 2762.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsFahsL8%3D&md5=97f6f704577750ad8461a63add3ef38eCAS |

[9]  B. Girisuta, L. Janssen, H. J. Heeres, Green Chem. 2006, 8, 701.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFyitL8%3D&md5=e875131fd366b185af1705a822558cc8CAS |

[10]  S. Nishimura, N. Ikeda, K. Ebitani, Catal. Today 2014, 232, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWms7jI&md5=f422af19dd2978a674c6cd906b5d74ecCAS |

[11]  J. Lewkowski, ChemInform 2003, 34, 17.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  J. Kiermayer, Chem.-Ztg. 1895, 19, 1003.
         | 1:CAS:528:DyaD28XovVWjug%3D%3D&md5=dec374fb53c63faff617e1bdf16da7b9CAS |

[13]  J. A. Middendorp, Recl. Trav. Chim. Pays-Bas Belg. 1919, 38, 1.
         | 1:CAS:528:DyaC1MXht1SntQ%3D%3D&md5=885721623f498be798ef34d2524af16fCAS |

[14]  G. R. Akien, L. Qi, I. T. Horvath, Chem. Commun. 2012, 48, 5850.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ert7o%3D&md5=bf2b7bebf8d7c0621a70d2fb9785480fCAS |

[15]  H. Ma, F. Wang, Y. Yu, Ind. Eng. Chem. Res. 2015, 54, 2657.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjs1WgsLY%3D&md5=7de8cf018928454951b1326720f08b9aCAS |

[16]  A. S. Amarasekara, L. T. D. Williams, C. C. Ebede, Carbohydr. Res. 2008, 343, 3021.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOhtr3L&md5=bdb8cf262ed692ac7a9554d44b3d1ed3CAS |

[17]  Y. Li, X. Lu, L. Yuan, Biomass Bioenergy 2009, 33, 1182.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFCgtb0%3D&md5=4c59ab1dd4ef5a0465a038f6a98c331eCAS |

[18]  D. W. Brown, A. J. Floyd, R. G. Kinsman, J. Chem. Technol. Biotechnol. 1982, 32, 920.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXitVSitbg%3D&md5=0dd9f11c4d945d7c1b160dce1a627efbCAS |

[19]  C. Moreau, A. Finiels, L. Vanoye, J. Mol. Catal. Chem. 2006, 253, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt12ksbw%3D&md5=70410e97bf8368bae896b159873a3b90CAS |

[20]  B. F. M. Kuster, J. Laurens, Stärke 1977, 29, 172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXksFCrsrg%3D&md5=13864c7269d21e99cc69c2a2cac49384CAS |

[21]  J. D. Chen, B. F. M. Kuster, K. Van Der Wiele, Biomass Bioenergy 1991, 1, 217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xks12ltbk%3D&md5=b0f74d2bf497cc0be3f3f26e6882c5ceCAS |

[22]  J. N. Chheda, Y. Román-Leshkov, J. A. Dumesic, Green Chem. 2007, 9, 342.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVaksLo%3D&md5=65bfb892cbb11a74211055914ee6987cCAS |

[23]  T. S. Hansen, J. M. Woodley, A. Riisager, Carbohydr. Res. 2009, 344, 2568.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWnt7vP&md5=4eb2b032d037cfd7485a4cf0d70027c1CAS |

[24]  Y. Takeuchi, F. Jin, K. Tohji, J. Mater. Sci. 2008, 43, 2472.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1Wisrk%3D&md5=a0d6a945df6b9f9d0ebdf92142474b48CAS |

[25]  Y. Li, H. Liu, C. Song, Bioresour. Technol. 2013, 133, 347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsVGhu7w%3D&md5=ceeb16f1f229f234fbf5a3d5f115da90CAS |

[26]  X. Qi, M. Watanabe, T. M. Aida, Green Chem. 2008, 10, 799.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFegsrw%3D&md5=05da36d8581fef747b6036852ae87b76CAS |

[27]  Y. Qu, Q. Wei, H. Li, Bioresour. Technol. 2014, 162, 358.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotV2msLo%3D&md5=e5410132e7301d62d4488f1eef45739fCAS |

[28]  X. Tong, Y. Ma, Y. Li, Appl. Catal. A 2010, 385, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGgtrjL&md5=2326f54433ed32552e713148f8953ae2CAS |

[29]  E. L. S. Ngee, Y. Gao, X. Chen, Ind. Eng. Chem. Res. 2014, 53, 14225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVWjtrrM&md5=d6aa886c9eb6a56a8670881fe32a7394CAS |

[30]  Y. Peng, Z. Hu, Y. Gao, ChemSusChem 2015, 8, 3208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVOmsL7M&md5=26d476ace8e77a95fb97e155c06debd9CAS |

[31]  H. Yan, Y. Yang, D. Tong, Catal. Commun. 2009, 10, 1558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtl2lsLs%3D&md5=39b5cbffe1c4c5d44a67215ca7821060CAS |

[32]  F. Guo, Z. Fang, T. J. Zhou, Bioresour. Technol. 2012, 112, 313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFOlurc%3D&md5=3bcf648f7342952228093998658d3679CAS |

[33]  S. Suganuma, K. Nakajima, M. Kitano, J. Am. Chem. Soc. 2008, 130, 12787.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCmsr3L&md5=c17f85ec4e22665c32bd1bc3637974cdCAS |

[34]  M. Toda, A. Takagaki, M. Okamura, J. N. Kondo, S. Hayashi, K. Domen, M. Hara, Nature 2005, 438, 178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2nsrvE&md5=fb1bede25104470a38fd0bb2db88168fCAS |

[35]  J. Wang, W. Xu, J. Ren, Green Chem. 2011, 13, 2678.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSksb3K&md5=e195b57241ebc89beb928f3b7d6ede28CAS |

[36]  E. T. Thostenson, T. W. Chou, Composites, Part A 1999, 30, 1055.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  J. Wang, T. Qu, M. Liang, RSC Adv. 2015, 5, 106053.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFajs7rK&md5=eed7af5941a844f328aa2b8f51978037CAS |

[38]  K. Fukuhara, K. Nakajima, M. Kitano, ChemSusChem 2011, 4, 778.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlOqs7k%3D&md5=17bdac6c1f13a0c0e23ab1ece9bb5a40CAS |

[39]  M. Okamura, A. Takagaki, M. Toda, Chem. Mater. 2006, 18, 3039.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1Snsrg%3D&md5=7d1d707806ace3dbd2f27c24149ed5bfCAS |

[40]  B. Zhang, J. Ren, X. Liu, Catal. Commun. 2010, 11, 629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlWhs7Y%3D&md5=c2973cb6a07ae9800258901bd37378bfCAS |

[41]  M. Sevilla, A. B. Fuertes, Carbon 2009, 47, 2281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1WqtLw%3D&md5=6643fd10a9347efb88863b8c38ccfb97CAS |

[42]  X. Qi, H. Guo, L. Li, ChemSusChem 2012, 5, 2215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GltbnL&md5=7fa8da3e93d4a6d01bcfbfe8f06eb6d4CAS |

[43]  M. Okamura, A. Takagaki, M. Toda, Chem. Mater. 2006, 18, 3039.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1Snsrg%3D&md5=7d1d707806ace3dbd2f27c24149ed5bfCAS |

[44]  Y. Liu, Y. Fang, X. Lu, Chem. Eng. J. 2013, 229, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GgtLfP&md5=8c635af5d0909271e71df201c0068ba1CAS |

[45]  S. Suganuma, K. Nakajima, M. Kitano, J. Am. Chem. Soc. 2008, 130, 12787.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCmsr3L&md5=c17f85ec4e22665c32bd1bc3637974cdCAS |

[46]  B. Zhang, J. Ren, X. Liu, Catal. Commun. 2010, 11, 629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlWhs7Y%3D&md5=c2973cb6a07ae9800258901bd37378bfCAS |

[47]  J. Wang, W. Xu, J. Ren, Green Chem. 2011, 13, 2678.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSksb3K&md5=e195b57241ebc89beb928f3b7d6ede28CAS |

[48]  Q. Shu, J. Gao, Z. Nawaz, Appl. Energy 2010, 87, 2589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFKqsL0%3D&md5=956429c3e97faac4e9456a43cf2da3aeCAS |

[49]  E. Kılıç, S. Yılmaz, Ind. Eng. Chem. Res. 2015, 54, 5220.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  L. J. Konwar, P. Mäki-Arvela, P. Begum, J. Catal. 2015, 329, 237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXps1eitrw%3D&md5=230194a984c5d4b56306b40d8432dc75CAS |

[51]  X. Qi, M. Watanabe, T. M. Aida, ChemSusChem 2010, 3, 1071.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2msbzF&md5=d7f59a5c1d1735d42838b11744318e34CAS |

[52]  X. Qi, M. Watanabe, T. M. Aida, Ind. Eng. Chem. Res. 2008, 47, 9234.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWqtbbN&md5=00bc70d2f253c08cb911b0bd5db4f319CAS |

[53]  A. A. Assanosi, M. M. Farah, J. Wood, RSC Adv. 2014, 4, 39359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlClu7zF&md5=c8d025e04f6b89b8ddc9fa896007423fCAS |

[54]  J. Zhao, C. Zhou, C. He, Y. Dai, X. Jia, Y. Yang, Catal. Today 2016, 264, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Glt7%2FN&md5=481bea79d715625745717416ef9920c6CAS |

[55]  X. Qi, M. Watanabe, T. M. Aida, Green Chem. 2009, 11, 1327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOmtbbI&md5=42723d85c1aac00b09704d30070850a0CAS |

[56]  X. Qi, N. Liu, Y. Lian, RSC Adv. 2015, 5, 17526.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitlSju7c%3D&md5=f3d8c06f044dcf622efc4ebea82e711bCAS |

[57]  S. Mondal, J. Mondal, A. Bhaumik, ChemCatChem 2015, 7, 3570.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFWrs7vE&md5=c7b9c913055f9c239efdf9027e0412d1CAS |

[58]  S. De, S. Dutta, B. Saha, Green Chem. 2011, 13, 2859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSksLfE&md5=e6994347f3cba5e3cd4357d4b5aace67CAS |

[59]  F. S. Asghari, H. Yoshida, Ind. Eng. Chem. Res. 2007, 46, 7703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKksrrJ&md5=66f96fe9c69f817c80b2bb3c60e336b7CAS |

[60]  G. Morales, M. Paniagua, J. A. Melero, Catal. Today 2017, 279, 305.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktVahtLo%3D&md5=aeb1b61d8845fdaf52403163da9b653eCAS |

[61]  A. S. Dias, M. Pillinger, A. A. Valente, J. Catal. 2005, 229, 414.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Ojs7o%3D&md5=36b43164660a4bc4ae05fcfa9d4dbb08CAS |