Nanofibre Sepiolite Catalyzed Green and Rapid Synthesis of 2-Amino-4H-chromene Derivatives
Arezou Mohammadinezhad A and Batool Akhlaghinia A BA Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
B Corresponding author. Email: akhlaghinia@um.ac.ir
Australian Journal of Chemistry 71(1) 32-46 https://doi.org/10.1071/CH17093
Submitted: 15 February 2017 Accepted: 8 August 2017 Published: 18 September 2017
Abstract
Nanofibre sepiolite catalyzed the rapid, clean, and highly efficient synthesis of 2-amino-4H-chromene derivatives by a one-pot, three-component condensation of a series of aldehydes, various enolizable C–H bonds (such as dimedone, α-naphthol, resorcinol, and 4-hydroxy-2H-chromen-2-one), and malononitrile in a mixture of water/ethanol. The present method offers several advantages such as high to excellent yields, short reaction times, mild reaction conditions, simple procedure, use of inexpensive, non-toxic, and naturally available catalyst, easy isolation of the products, and no need for column chromatography. The catalyst could be easily separated from the reaction mixture and can be reused for many consecutive trials without a significant decline in its reactivity.
References
[1] Z. Dong, X. Liu, J. Feng, M. Wang, L. Lin, X. Feng, Eur. J. Org. Chem. 2011, 137.| Crossref | GoogleScholarGoogle Scholar |
[2] N. Thomas, S. M. Zachariah, Asian J. Pharm. Clin. Res. 2013, 6, 11.
| 1:CAS:528:DC%2BC3sXhtV2jsLrO&md5=3a8bf7a1ace75db63939cd9c8e5a50cfCAS |
[3] I. G. Sonsona, E. Marqués-López, R. P. Herrera, Symmetry 2015, 7, 1519.
| Crossref | GoogleScholarGoogle Scholar |
[4] N. Azizi, M. Mariami, M. Edrisi, Dyes Pigm. 2014, 100, 215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvValtLrF&md5=ca7e87f11d57c89dc4c816453501ade9CAS |
[5] H. M. Kim, P. R. Yang, M. S. Seo, J. S. Yi, J. H. Hong, S. J. Jeon, Y. G. Ko, K. J. Lee, B. R. Cho, J. Org. Chem. 2007, 72, 2088.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvF2rs7g%3D&md5=45851b5df1a2091e9bc321ba0a0c1d9fCAS |
[6] J. H. Son, C. S. Lim, J. H. Han, I. A. Danish, M. Kim, B. R. Cho, J. Org. Chem. 2011, 76, 8113.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVyhu7%2FK&md5=7c1415cecbc14aaf2db59e5562840ec4CAS |
[7] X. Z. Lian, Y. Huang, Y. Q. Li, W. J. Zheng, Monatsh. Chem. 2008, 139, 129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Kns70%3D&md5=2c15444075984f6147819d81255fd6aeCAS |
[8] B. Boumoud, A. Debbache, T. Boumoud, R. Boulcina, A. Debache, Lett. Org. Chem. 2014, 11, 475.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntleitrY%3D&md5=774da6ba9f67d6540ac6771dd9576903CAS |
[9] G. Sabitha, K. Arundhathi, K. Sudhakar, B. S. Sastry, J. S. Yadav, Synth. Commun. 2009, 39, 433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsF2gtQ%3D%3D&md5=ed61ff806f41de680cbf371c0472ebd5CAS |
[10] H. Kiyani, M. Jalali, Heterocycles 2016, 92, 75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVOlsb%2FJ&md5=589ffabd9c9796584caf2036ea2f6e6cCAS |
[11] S. Nemouchi, R. Boulcina, B. Carboni, A. Debache, C. R. Chim. 2012, 15, 394.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVGnsbs%3D&md5=c77edd9a23b46ca4274ccab763685d57CAS |
[12] D. M. Pore, K. A. Undale, B. B. Dongare, U. V. Desai, Catal. Lett. 2009, 132, 104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVCltbY%3D&md5=b44f21a3edd2a450cd992b4355f72d51CAS |
[13] M. Zolfigol, A. Khazaei, A. Moosavi-Zare, J. Afsar, V. Khakyzadeh, O. Khaledian, J. Chin. Chem. Soc. 2015, 62, 398.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmslegsb4%3D&md5=cf9f2ad8bea160971494c705ca22fb4fCAS |
[14] A. Insrasena, S. D. Riyaz, A. Naidu, P. K. Dubey, Asian J. Chem. 2014, 26, 2221.
[15] A. Shaabani, S. Samadi, Z. Badri, A. Rahmati, Catal. Lett. 2005, 104, 39.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVClt7vN&md5=b0e48683905a1f1dec2803b7d34753c8CAS |
[16] R. P. Herrera, E. Marqués-López, Multicomponent Reactions: Concepts and Applications for Design and Synthesis 2015 (John Wiley & Sons, Inc.: Hoboken, NJ).
[17] T. Kuwada, K. Harada, J. Nobuhiro, T. Choshi, S. Hibino, Heterocycles 2002, 57, 2081.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFyntro%3D&md5=ee4ada5854566b59bcf6c5b10b751090CAS |
[18] P. Srivastava, A. S. Saxena, V. J. Ram, Synthesis 2000, 541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislyqsbY%3D&md5=eb1345d25422b897f3f9db7614181f8cCAS |
[19] K. A. Parker, T. L. Mindt, Tetrahedron 2011, 67, 9779.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFWjt7zJ&md5=49a2a4c602fcf0743e7295e32533fdf6CAS |
[20] P. D. Giorgi, P. J. Miedziak, J. K. Edwards, G. J. Hutchings, S. Antoniotti, ChemCatChem 2017, 9, 70.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVymtLbO&md5=92db4acda0a4a466aa90f3ae2ff3c443CAS |
[21] T. B. Machado, A. V. Pinto, M. C. F. R. Pinto, I. C. R. Leal, M. G. Silva, A. C. F. Amaral, R. M. Kuster, K. R. Netto-dosSantos, Int. J. Antimicrob. Agents 2003, 21, 279.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFeqsbs%3D&md5=6a6ed4f52336a45b6b8b33020278d1d4CAS |
[22] A. Shaabani, R. Ghadari, A. Sarvary, A. H. Rezayan, J. Org. Chem. 2009, 74, 4372.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVKlur8%3D&md5=ad61a1b9b470349fe89a07e9cef7c37eCAS |
[23] F. Schonfeld, R. Troschutz, Heterocycles 2001, 55, 1679.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntFWls7k%3D&md5=ced68764f7a8ad91704bd4fc6e9638c4CAS |
[24] S. Abdolmohammadi, S. Balalaie, Tetrahedron Lett. 2007, 48, 3299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvF2rt7w%3D&md5=8ceecaa719dca560ef2d659ec8731899CAS |
[25] N. Hazeri, M. Maghsoodlou, M. Mousavi, J. Aboonajmi, M. Safarzaei, Res. Chem. Intermed. 2015, 41, 169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvFWnt7Y%3D&md5=aec11511e58c3b3571e9da870c5c4ae6CAS |
[26] H. Wang, J. Lu, Z. Zhang, Monatsh. Chem. 2010, 141, 1107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKrtrrO&md5=998785a3a57fe2acc03d2bc69f72ee52CAS |
[27] J. M. Khurana, S. Kumar, Tetrahedron Lett. 2009, 50, 4125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1ertrw%3D&md5=840d95380cab61344e8246a21db7a16fCAS |
[28] M. G. Dekamin, M. Eslami, A. Maleki, Tetrahedron 2013, 69, 1074.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCku73E&md5=da396551c9df9d3e89c20b2e18e7f838CAS |
[29] M. M. Heravi, M. Zakeri, N. Mohammadi, Chin. J. Chem. 2011, 29, 1163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFyqt7w%3D&md5=811fdf608321c8870d628eae479e41eeCAS |
[30] C. B. Sangani, D. C. Mungra, M. P. Patel, R. G. Patel, Cent. Eur. J. Chem. 2011, 9, 635.
| 1:CAS:528:DC%2BC3MXntF2hsrg%3D&md5=25571f783e7185fa8691d43ed767ce55CAS |
[31] K. Tabatabaeian, H. Heidari, M. Mamaghani, N. O. Mahmoodi, Appl. Organomet. Chem. 2012, 26, 56.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVyjsg%3D%3D&md5=1e8102f568f910a2ebc293bbdab78faeCAS |
[32] N. Hazeri, M. Maghsoodlou, F. Mir, M. Kangani, H. Saravani, E. Molashahi, Chin. J. Catal. 2014, 35, 391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOqsrrO&md5=5c6b8fe01fe759394f716111fb297b94CAS |
[33] K. Gong, H. L. Wang, J. Luo, Z. L. Liu, J. Heterocycl. Chem. 2009, 46, 1145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSgtr3I&md5=2fe8a2edf1a4830bc9f6ca220661a24eCAS |
[34] H. Shaterian, M. Mohammadnia, Res. Chem. Intermed. 2015, 41, 1301.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1yquro%3D&md5=c36a5f4c993392d7a5edff4376b68ff6CAS |
[35] H. R. Shaterian, M. Honarmand, Synth. Commun. 2011, 41, 3573.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWnsrc%3D&md5=3e2d4f136ae45f5d06e4e6cf4f8de2bfCAS |
[36] H. R. Shaterian, A. R. Oveisi, J. Iran. Chem. Soc. 2011, 8, 545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslyisrc%3D&md5=88b75d14de74b191865a402f359c80b1CAS |
[37] Y. Wang, H. Ye, G. Zuo, J. Luo, J. Mol. Liq. 2015, 212, 418.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1ertr3M&md5=4e29cf5da938d6794023e328bb483651CAS |
[38] J. M. Khurana, B. Nand, P. Saluja, Tetrahedron 2010, 66, 5637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1eqtrg%3D&md5=e3a91f6c057262b8776c784f7ee27216CAS |
[39] A. T. Khan, M. Lal, S. Ali, M. M. Khan, Tetrahedron Lett. 2011, 52, 5327.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKitbbF&md5=5e459ae2b1846e936de9b816d8a18a3dCAS |
[40] M. M. Heravi, K. Bakhtiari, V. Zadsirjan, F. Bamoharramb, O. M. Heravi, Bioorg. Med. Chem. Lett. 2007, 17, 4262.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVKntbs%3D&md5=a784b4317eeddd718d1f2e11904483f7CAS |
[41] K. Niknam, N. Borazjani, R. Rashidian, A. Jamali, Chin. J. Catal. 2013, 34, 2245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt1yjtr8%3D&md5=f98a162a545d15a66fd51e51c668db73CAS |
[42] T. S. R. Prasanna, K. M. Raju, J. Korean Chem. Soc. 2011, 55, 662.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKltr%2FM&md5=3c7a3bc445a0003c1fde60e721130854CAS |
[43] G. M. Ziarani, A. Badiei, M. Azizi, P. Zarabadi, Iran. J. Chem. Chem. Eng. 2011, 30, 59.
[44] H. R. Shaterian, F. Rigi, Res. Chem. Intermed. 2014, 40, 2983.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkt1Knu7c%3D&md5=ddf2d405a1c2b6a7c5533af56a9823cfCAS |
[45] Y. A. Tayade, S. A. Padvi, Y. B. Wagh, D. S. Dalal, Tetrahedron Lett. 2015, 56, 2441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsVKqurg%3D&md5=63361342689e765f9bac2bdad7e5fca7CAS |
[46] D. Azarifar, S. Khatami, M. Zolfigol, R. Nejat-Yami, J. Iran. Chem. Soc. 2014, 11, 1223.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVGrtbrN&md5=d27c9f582cc3029aae131d55234bfc75CAS |
[47] R. Y. Guo, Z. M. An, L. P. Mo, R. Z. Wang, H. X. Liu, S. X. Wang, Z. H. Zhang, ACS Comb. Sci. 2013, 15, 557.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Ckt7nK&md5=c9d35ea1c6a09fa531b51ff47efd9f33CAS |
[48] K. S. Pandit, P. V. Chavan, U. V. Desai, M. A. Kulkarni, P. P. Wadgaonkar, New J. Chem. 2015, 39, 4452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksF2qt7w%3D&md5=04dd10f0d64ea1b2456cf52356e3fbceCAS |
[49] M. Esmaeilpour, J. Javidi, F. Dehghani, F. Nowroozi Dodeji, RSC Adv. 2015, 5, 26625.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjvF2ksL4%3D&md5=a50f0b4c22f133c62b57f74669f5e86aCAS |
[50] K. Tabatabaeian, M. Zanjanchi, M. Mamaghani, A. Dadashi, Can. J. Chem. 2014, 92, 1086.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslekt7vF&md5=5a7a55cfd3b5ca262a3ac3abdcad4dddCAS |
[51] S. Baghbanian, N. Rezaeia, H. Tashakkorian, Green Chem. 2013, 15, 3446.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVShtr3K&md5=d4c6cd8125fe607ce4a4abf34dcca306CAS |
[52] M. E. Sedaghat, M. Rajabpour Booshehri, M. R. Nazarifar, F. Farhadi, Appl. Clay Sci. 2014, 95, 55.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntlOqtbk%3D&md5=b7d20f90a5f449582f7356dc808b1ac2CAS |
[53] H. Kiyani, F. Ghorbani, Res. Chem. Intermed. 2015, 41, 7847.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFOhtLjF&md5=e0152704dd566b8b26c3840fc428411aCAS |
[54] H. Kiyani, F. Ghorbani, Res. Chem. Intermed. 2015, 41, 4031.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFCisbnM&md5=a6dad8b8fdb3bfe6b7c4f8261a763342CAS |
[55] A. Khazaei, F. Gholami, V. Khakyzadeh, A. Moosavi-Zare, J. Afsar, RSC Adv. 2015, 5, 14305.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlOgt7w%3D&md5=54907ce58bcec285df3db1587015e8faCAS |
[56] M. Seifi, H. Sheibani, Catal. Lett. 2008, 126, 275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlaisLjI&md5=2c0e4539c168471b9e01bfc45399238eCAS |
[57] H. Mehrabi, M. Kazemi-Mireki, Chin. Chem. Lett. 2011, 22, 1419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKksbjF&md5=c6e17b3379becaacd58e848044ba92edCAS |
[58] P. L. Anandgaonker, S. Jadhav, S. T. Gaikwad, A. S. Rajbhoj, J. Cluster Sci. 2014, 25, 483.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFenurrP&md5=23876247b34d5934cf89fe79b674bfacCAS |
[59] M. Nasr-Esfahani, T. Abdizadeh, J. Nanosci. Nanotechnol. 2013, 13, 5004.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1Orsb8%3D&md5=61466194cd690efb350fd27a12232f10CAS |
[60] S. Banerjee, A. Saha, New J. Chem. 2013, 37, 1.
| Crossref | GoogleScholarGoogle Scholar |
[61] H. Nagabhushana, S. S. Saundalkar, L. Muralidhar, B. M. Nagabhushana, C. R. Girija, D. Nagaraja, M. A. Pasha, V. P. Jayashankara, Chin. Chem. Lett. 2011, 22, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVelsA%3D%3D&md5=7ff6400205275abd6ea4eff5aefa409dCAS |
[62] A. Montaghami, N. Montazeri, Orient. J. Chem. 2014, 30, 1361.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvV2ntrbF&md5=25123bef19afb7bbb409698d0aa96048CAS |
[63] A. Saha, S. Payraa, S. Banerjee, RSC Adv. 2015, 5, 101664.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVCit7vI&md5=ed6d1b9ff4facb238e13b2fff457916aCAS |
[64] M. Nasseri, S. M. Sadeghzadeh, J. Iran. Chem. Soc. 2013, 10, 1047.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlyqurbP&md5=5ebbd049c61c54752d2f8215343e652eCAS |
[65] D. Azarifar, S. Khatami, R. Nejat-Yami, J. Chem. Sci. 2014, 126, 95.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtFWhs7g%3D&md5=3c4dddf734e697c9807cc76e05de755eCAS |
[66] M. Suarez, E. Garcia-Romero, Appl. Clay Sci. 2012, 67–68, 72.
| Crossref | GoogleScholarGoogle Scholar |
[67] A. Rahman, N. Kishimoto, T. Urabe, Water Environ. J. 2015, 29, 375.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht12ks7bO&md5=45f8b8e5a3b5022ff4d0203870f04b89CAS |
[68] Z. Cheng, R. Yang, X. Zhu, Desalin. Water Treat. 2016, 57, 25207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XisVGjsrk%3D&md5=1894ae7ff2604ab5c2d0950165dfb2bcCAS |
[69] M. Frydrych, C. Wan, R. Stengler, K. U. O’Kellya, B. Chen, J. Mater. Chem. 2011, 21, 9103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVWgsr0%3D&md5=60028e467cb943c92c94ff336c4f2e32CAS |
[70] V. P. Singh, G. S. Kapur, S. Choudhary, V. Choudhary, RSC Adv. 2016, 6, 59762.
| Crossref | GoogleScholarGoogle Scholar |
[71] P. Bhagabati, T. K. Chaki, RSC Adv. 2015, 5, 60294.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFajsr3J&md5=a7ab6c69fa0259b2259b54ee9e400bfdCAS |
[72] Y. Turhan, M. Dogan, M. Alkan, Adv. Polym. Technol. 2013, 32, E65.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKgt7vJ&md5=2a6969eb20e0ece5564a9e44e7953a5bCAS |
[73] P. Aranda, R. Kun, M. A. Martín-Luengo, S. Letaïef, I. Dékány, E. Ruiz-Hitzky, Chem. Mater. 2008, 20, 84.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVejtbbF&md5=f86daba1e246381f4b6f9d6d08af75b8CAS |
[74] C. Wan, B. Chen, Nanoscale 2011, 3, 693.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVWhtrw%3D&md5=65597c8945ae255135c725585f6e62cdCAS |
[75] C. Belver, P. Aranda, E. Ruiz-Hitzky, J. Mater. Chem. A 2013, 1, 7477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovFWmsro%3D&md5=3c0124b643ceb31b8230a7fe6caa4970CAS |
[76] H. Chen, M. Zheng, H. Sun, Q. Jia, Mater. Sci. Eng. A 2007, 445–446, 725.
| Crossref | GoogleScholarGoogle Scholar |
[77] F. Zheng, Q. H. Mi, K. Zhang, J. Xu, Polym. Compos. 2016, 37, 21.
| Crossref | GoogleScholarGoogle Scholar |
[78] Y. Kitayama, A. Abe, Nippon Kagaku Kaishi 1989, 11, 1824.
| Crossref | GoogleScholarGoogle Scholar |
[79] K. Kaneda, M. Higuchi, T. Imanaka, Chem. Express 1988, 3, 335.
| 1:CAS:528:DyaL1MXlslSlsQ%3D%3D&md5=43d804e43106bc5f6fa32f8d988a7ebcCAS |
[80] Y. T. Algoufi, U. G. Akpan, M. Asif, B. H. Hameed, Appl. Catal. A 2014, 487, 181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyksrjO&md5=f9556ea12852930514316c8427371999CAS |
[81] M. Uğurlu, M. H. Karaoğlu, Chem. Eng. J. 2011, 166, 859.
| Crossref | GoogleScholarGoogle Scholar |
[82] J. Olszówka, R. Karcz, B. Napruszewska, E. Bielańska, R. Dula, M. Krzan, M. Nattich-Rak, R. P. Socha, A. Klimek, K. Bahranowski, E. M. Serwicka, Appl. Catal. A 2016, 509, 52.
| Crossref | GoogleScholarGoogle Scholar |
[83] R. Tao, S. Miao, Z. Liu, Y. Xie, B. Han, G. An, K. Ding, Green Chem. 2009, 11, 96.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvF2nsw%3D%3D&md5=e10146c8b8cff017341da07e185edba7CAS |
[84] D. J. Macquarrie, R. Nazih, S. Sebti, Green Chem. 2002, 4, 56.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhtleks7Y%3D&md5=f7ead9b76124ab24a144a42470e238fbCAS |
[85] S. Hojati, H. Khademi, J. Sci. Islam. Repub. Iran 2013, 24, 129.
[86] Z. Sárossy, T. O. J. Blomfeldt, M. S. Hedenqvist, C. B. Koch, S. S. Ray, D. Plackett, ACS Appl. Mater. Interfaces 2012, 4, 3378.
| Crossref | GoogleScholarGoogle Scholar |
[87] Ü. B. Alkan, N. Kizican, Procedia Soc. Behav. Sci. 2015, 195, 2067.
| Crossref | GoogleScholarGoogle Scholar |
[88] K. Shimizu, R. Maruyama, S. Komai, T. Kodama, Y. Kitayama, J. Catal. 2004, 227, 202.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntV2nsrg%3D&md5=a6116f8a6f35161d27c046efff622ac5CAS |
[89] S. S. T. Gülmen, E. A. Güvelb, N. Kizilcan, Procedia Soc. Behav. Sci. 2015, 195, 1623.
| Crossref | GoogleScholarGoogle Scholar |
[90] M. Sakizci, B. E. Alver, E. Yorukogullari, J. Therm. Anal. Calorim. 2011, 103, 435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ykuro%3D&md5=c32e0979624a09c3e1e3cf9eea53d8c3CAS |
[91] N. Razavi, B. Akhlaghinia, New J. Chem. 2016, 40, 447.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslKgur%2FL&md5=52d9ce649d2860b2e01f59910e9aecc1CAS |
[92] M. Zarghani, B. Akhlaghinia, RSC Adv. 2016, 6, 38592.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmslKmtLc%3D&md5=02247b78a764b7d711a7b12db30f0988CAS |
[93] M. Zarghani, B. Akhlaghinia, RSC Adv. 2016, 6, 31850.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xksl2nur8%3D&md5=54c20235cf877942a0c9adb609fcf320CAS |
[94] R. Jahanshahi, B. Akhlaghina, RSC Adv. 2016, 6, 29210.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xkt1Wku7w%3D&md5=9fed8a6d12072065259ad842f1f56f47CAS |
[95] M. Zarghani, B. Akhlaghinia, RSC Adv. 2015, 5, 87769.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFOrt77I&md5=c3aae9710fd135e234d878457777af19CAS |
[96] N. Razavi, B. Akhlaghinia, RSC Adv. 2015, 5, 12372.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvVWqtQ%3D%3D&md5=f0dbe84a5f8a054a9e53389906d8505eCAS |
[97] M. Zarghani, B. Akhlaghinia, Appl. Organomet. Chem. 2015, 29, 683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1yqu7rF&md5=162ac50b5c2093eaa4346c0ca6bafef4CAS |
[98] S. Rezazadeh, B. Akhlaghinia, E. Goharshadi, H. Sarvari, J. Chin. Chem. Soc. 2014, 61, 1108.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1yisLrE&md5=5c26405d28615ee1a1aca64756c7d9fcCAS |
[99] B. Akhlaghinia, H. Ebrahimabadi, E. K. Goharshadi, S. Samiee, S. Rezazadeh, J. Mol. Catal. Chem. 2012, 357, 67.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFKisLw%3D&md5=4a57a97cc2b4e5f1bf16e4068d9ab3d0CAS |
[100] W. G. Xu, S. F. Liu, S. X. Lu, S. Y. Kang, Y. Zhou, H. F. Zhang, J. Colloid Interface Sci. 2010, 351, 210.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWhtbrJ&md5=374e3655f246716e52eb9288f02b10ddCAS |
[101] Y. Bouazizi, A. Romdhane, H. B. Jannet, Eur. J. Chem. 2014, 5, 457.
| Crossref | GoogleScholarGoogle Scholar |
[102] E. Eren, H. Gumus, N. Ozbay, Desalination 2010, 262, 43.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWnsbjF&md5=15db439c0b9f73e672f1954d6471d4f0CAS |
[103] G. Tian, W. Wang, Y. Kang, A. Wang, J. Therm. Anal. Calorim. 2014, 117, 1211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtF2jsr7E&md5=836fd81fdbd6faf6fa23ccff49e72a75CAS |
[104] H. Cheng, J. Yang, R. L. Frost, Thermochim. Acta 2011, 512, 202.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOqtLvN&md5=dd8ea1d1d860d826d780383688c0f8b4CAS |
[105] Q. Liu, X. Yao, H. Cheng, R. L. Frost, Spectrochim. Acta. Part A 2012, 96, 784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtl2gur7L&md5=40687529139f5bf63d1ecc29da9e9581CAS |
[106] M. S. Yılmaz, Y. Kalpaklı, S. Piskin, J. Therm. Anal. Calorim. 2013, 114, 1191.
| Crossref | GoogleScholarGoogle Scholar |
[107] A. G. Vagzogullar, M. Ugurlu, G. Kula, Int. J. Environ. 2015, 4, 19.
| Crossref | GoogleScholarGoogle Scholar |
[108] M. Mora, I. Lopez, M. A. Carmona, C. Jimenez-Sanchidrian, J. R. Ruiz, Polyhedron 2010, 29, 3046.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12ns7nF&md5=7cc819377f9f913598084ec842c014bbCAS |
[109] A. Mazloom Jalali, F. Afshar Taromi, M. Atai, L. Solhi, J. Exp. Nanosci. 2016, 11, 1171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtV2gurjM&md5=9a7507140a530fb54cfab2b20042c550CAS |
[110] M. Alkan, G. Tekin, H. Namli, Microporous Mesoporous Mater. 2005, 84, 75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsF2nt7c%3D&md5=40f0969eece5aa651fba68efd91a3cc7CAS |
[111] T. Perraki, A. Orfanoudaki, J. Therm. Anal. Calorim. 2008, 91, 589.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVeru78%3D&md5=30c62b93ac43a53ed7aefa634e522f01CAS |
[112] Y. Gao, H. Gan, G. Zhang, Y. Guo, Chem. Eng. J. 2013, 217, 221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVyhs70%3D&md5=92bd0a0b949b05c74ea27e85f6c3e8aeCAS |
[113] A. Özcan, A. S. Özcan, J. Hazard, Mater. 2005, 125, 252.
| Crossref | GoogleScholarGoogle Scholar |
[114] J. Abdo, H. Al-Sharji, E. Hassan, Surf. Interface Anal. 2016, 48, 522.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xjslyiurs%3D&md5=9aa34911d78a749d8ea51a045dbec33aCAS |
[115] X. Liang, Y. Xu, G. Sun, W. Lin, Y. Sun, S. Yang, Q. Xu, Chem. Eng. J. 2011, 174, 436.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlaisrbL&md5=83be6657a21014db4a8ba718194b95e3CAS |
[116] H. Liu, W. Chen, C. Liu, Y. Liu, C. Dong, Microporous Mesoporous Mater. 2014, 194, 72.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXoslCgsb4%3D&md5=f477808e98e36ccf7176a7736844ea07CAS |
[117] S. Balci, J. Chem. Technol. Biotechnol. 1996, 66, 72.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivFegur8%3D&md5=925c7a108d33e79a27331fe45a4adefdCAS |
[118] B. K. Banik, A. T. Reddy, A. Datta, C. Mukhopadhyay, Tetrahedron Lett. 2007, 48, 7392.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGisr7K&md5=c0b01d7174329f0a06a0320f95e47017CAS |
[119] J. E. Post, D. L. Bish, P. J. Heaney, Am. Mineral. 2007, 92, 91.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyrsLs%3D&md5=0d227970bfe59dd3b74616666c4c7212CAS |
[120] F. Zhou, C. Yan, Y. Zhang, J. Tan, H. Wang, S. Zhou, S. Pu, Appl. Clay Sci. 2016, 124–125, 119.
| Crossref | GoogleScholarGoogle Scholar |
[121] S. Balalaie, M. Bararjanian, A. M. Amani, B. Movassagh, Synlett 2006, 2, 263.
| Crossref | GoogleScholarGoogle Scholar |
[122] S. Banerjee, A. Horn, H. Khatri, G. Sereda, Tetrahedron Lett. 2011, 52, 1878.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFyksro%3D&md5=9604cf2c18507aad49cadb6290d07ac1CAS |
[123] W. B. Sun, P. Zhang, J. Fan, S. H. Chen, Z. H. Zhang, Synth. Commun. 2010, 40, 587.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWit7c%3D&md5=b9db69a8891e24d9bd4e8aa45e2b0df1CAS |
[124] R. Hekmatshoar, S. Majedi, K. Bakhtiari, Catal. Commun. 2008, 9, 307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKrsr3K&md5=1362f391ab1c8ed68f0cadb4af0e7d37CAS |
[125] M. A. Zolfigol, M. Yarie, S. Baghery, Synlett 2016, 27, 1418.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVWjt78%3D&md5=d3c9c458b64df3b83f1704fe287be804CAS |
[126] G. T. Pawar, R. R. Magar, M. K. Lande, Polycycl. Aromat. Compd. 2016,
| Crossref | GoogleScholarGoogle Scholar |