Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Ligand-Stabilized ZnO Quantum Dots: Molecular Dynamics and Experimental Study

Rohul Hayat Adnan A C , Kai Lin Woon A , Narong Chanlek B , Hideki Nakajima B and Wan Haliza Abd. Majid A
+ Author Affiliations
- Author Affiliations

A Low-Dimensional Materials Research Center, Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia.

B Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima 3000, Thailand.

C Corresponding author. Email: rohuladnan@gmail.com

Australian Journal of Chemistry 70(10) 1110-1117 https://doi.org/10.1071/CH17078
Submitted: 9 February 2017  Accepted: 18 May 2017   Published: 16 June 2017

Abstract

Different aminoalcohol ligands, monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) were employed to passivate the surface of ZnO quantum dots (ZnO QDs). High-resolution transmission electron microscopy (HRTEM) imaging revealed that the higher branched aminoalcohols produced smaller sized ZnO QDs. The average size for ZnO/MEA, ZnO/DEA, and ZnO/TEA were found to be 3.2, 2.9, and 2.4 nm. TEA ligands were effective in producing stable, monodisperse ZnO QDs compared with DEA and MEA ligands. Molecular dynamics and semi-empirical calculations suggested that TEA and DEA ligands interact strongly with the partial charge of ZnO dangling bonds and have a large molar volume to hinder the diffusion of precursors through the ligands to the surface of ZnO resulting in a smaller particle size as compared with MEA ligands. As the size of ZnO QDs decreases from ZnO/MEA to ZnO/TEA, the absorption edge and emission peak maximum blue-shifts to a shorter wavelength due to the quantum size effect. The bandgap of ZnO/MEA, ZnO/DEA, and ZnO/TEA was determined to be 3.97, 4.07, and 4.23 eV, and the emission peak was found to be 472, 464, and 458 nm when excited using a 325 nm excitation wavelength, respectively.


References

[1]  G.-C. Yi, C. Wang, W. I. Park, Semicond. Sci. Technol. 2005, 20, S22.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvFSnuro%3D&md5=32d4b8d3aa32e0272d5ac6c13721c4feCAS |

[2]  S. Li, Z. Sun, R. Li, M. Dong, L. Zhang, W. Qi, X. Zhang, H. Wang, Sci. Rep. 2015, 5, 8475.
         | 1:CAS:528:DC%2BC2MXosFeltLs%3D&md5=e92ada0e8c78f0ca4afc488dc500a76fCAS |

[3]  J. Oliva, L. Perez Mayen, E. De la Rosa, L. A. Diaz-Torres, A. Torres Castro, P. Salas, J. Phys. D: Appl. Phys. 2014, 47, 015104.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  D. Zhao, H. Song, L. Hao, X. Liu, L. Zhang, Y. Lv, Talanta 2013, 107, 133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Whsro%3D&md5=6ca7bbc4f4c5a5e59c8d8b1e61f44de4CAS |

[5]  M. A. Mahjoub, G. Monier, C. Robert-Goumet, F. Réveret, M. Echabaane, D. Chaudanson, M. Petit, L. Bideux, B. Gruzza, J. Phys. Chem. C 2016, 120, 11652.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnsF2rsL0%3D&md5=4b9bcf3197d78f05f821766488635055CAS |

[6]  Y. Gu, I. L. Kuskovsky, M. Yin, S. O’Brien, G. F. Neumark, Appl. Phys. Lett. 2004, 85, 3833.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFeht7c%3D&md5=37c2aae5108bb3cbe238337320be1a82CAS |

[7]  L. Zhang, L. Yin, C. Wang, N. Lun, Y. Qi, D. Xiang, J. Phys. Chem. C 2010, 114, 9651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVaksLc%3D&md5=e37d0d859386ef11b40839e8f09f643fCAS |

[8]  L.-L. Han, L. Cui, W.-H. Wang, J.-L. Wang, X.-W. Du, Semicond. Sci. Technol. 2012, 27, 065020.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  X. Liu, X. Xing, Y. Li, N. Chen, I. Djerdj, Y. Wang, New J. Chem. 2015, 39, 2881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFSmtrg%3D&md5=34dbc1a06c7b0ab036a688ef81e3a763CAS |

[10]  H. Zeng, S. Yang, W. Cai, J. Phys. Chem. C 2011, 115, 5038.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1aiurc%3D&md5=6f23240460051e1e15989104e7b8ccd5CAS |

[11]  A. Asok, M. N. Gandhi, A. R. Kulkarni, Nanoscale 2012, 4, 4943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSiu7fF&md5=b8c4754cca6496a170e8248c992397d2CAS |

[12]  J. Zhang, B. Zhao, Z. Pan, M. Gu, A. Punnoose, Cryst. Growth Des. 2015,
         | Crossref | GoogleScholarGoogle Scholar |

[13]  V. Musat, A. Tabacaru, B. S. Vasile, V.-A. Surdu, RSC Adv. 2014, 4, 63128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVyktbfN&md5=d7feccce045ca3a6baa1288bc15359ccCAS |

[14]  X. Xu, C. Xu, X. Wang, Y. Lin, J. Dai, J. Hu, CrystEngComm 2013, 15, 977.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVKjtg%3D%3D&md5=0cdd678f77621ae67b165440390ed375CAS |

[15]  N. Mary Jacob, T. Thomas, Ceram. Int. 2014, 40, 13945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvVSnsr0%3D&md5=36a93c4b76cc12a0d33c94f3923851a9CAS |

[16]  S. Saha, S. Sarkar, S. Pal, P. Sarkar, RSC Adv. 2013, 3, 532.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSmt73E&md5=040a038f33db55211542c312d5450084CAS |

[17]  H.-Q. Shi, W.-N. Li, L.-W. Sun, Y. Liu, H.-M. Xiao, S.-Y. Fu, Chem. Commun. 2011, 47, 11921.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKgt7%2FF&md5=ed74956db9d0ee48b90da07f7e47b019CAS |

[18]  H.-M. Xiong, R.-Z. Ma, S.-F. Wang, Y.-Y. Xia, J. Mater. Chem. 2011, 21, 3178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFCit74%3D&md5=32ec075a15b3f4a2e53001782c3670bdCAS |

[19]  H.-M. Xiong, J. Mater. Chem. 2010, 20, 4251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFKrsbg%3D&md5=5d9e22642e24794fb8c1b408f671d7aaCAS |

[20]  M. L. Singla, M. M. Shafeeq, M. Kumar, J. Lumin. 2009, 129, 434.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFejurc%3D&md5=744b9c78168c5f04898bf3960f5b3e17CAS |

[21]  A. K. Singh, V. Viswanath, V. C. Janu, J. Lumin. 2009, 129, 874.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1GgsL0%3D&md5=3e53b7f45223fb8911f0d48641a0e29aCAS |

[22]  P. Hosseini Vajargah, H. Abdizadeh, R. Ebrahimifard, M. R. Golobostanfard, Appl. Surf. Sci. 2013, 285, 732.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVeqtr7N&md5=e57cb7f5023793bcec7ca24e59fd4818CAS |

[23]  K. Thongsuriwong, P. Amornpitoksuk, S. Suwanboon, J. Phys. Chem. Solids 2010, 71, 730.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFSktr4%3D&md5=a2f079e07460ee7bdf4ae472848a79a6CAS |

[24]  E. A. Meulenkamp, J. Phys. Chem. B 1998, 102, 5566.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktVKlurs%3D&md5=20af38c8a159ca5dd9a4f0bc8c22f6e2CAS |

[25]  M. Ali, M. Winterer, Chem. Mater. 2010, 22, 85.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFektrbM&md5=75857bacd64a441169823c10ce5281b9CAS |

[26]  N. M. Jacob, T. Thomas, RSC Adv. 2015, 5, 15154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFGru70%3D&md5=3038513faedbf33e0eed1e5524382d83CAS |

[27]  D. P. Anderson, R. H. Adnan, J. F. Alvino, O. Shipper, B. Donoeva, J.-Y. Ruzicka, H. Al Qahtani, H. H. Harris, B. Cowie, J. B. Aitken, V. B. Golovko, G. F. Metha, G. G. Andersson, Phys. Chem. Chem. Phys. 2013, 15, 14806.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Khtb%2FJ&md5=7a27c311f6e43e51ec58d304e39892a4CAS |

[28]  S. Yumitori, J. Mater. Sci. 2000, 35, 139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtV2js7Y%3D&md5=8b3d83d07ec0b14347bc85a260f09294CAS |

[29]  M. Polovina, B. Babić, B. Kaluderović, A. Dekanski, Carbon 1997, 35, 1047.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFOnsL8%3D&md5=d671e759333ef5718b205bb468b3740aCAS |

[30]  D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, R. S. Ruoff, Carbon 2009, 47, 145.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVChsbbI&md5=71d505af98ff6fee982df9c2cd8870c3CAS |

[31]  H. Bozetine, Q. Wang, A. Barras, M. Li, T. Hadjersi, S. Szunerits, R. Boukherroub, J. Colloid Interface Sci. 2016, 465, 286.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVyks7jJ&md5=9a57a7846bd9f5e0d452f23f1a1bf836CAS |

[32]  T. Schindler, M. Schmiele, T. Schmutzler, T. Kassar, D. Segets, W. Peukert, A. Radulescu, A. Kriele, R. Gilles, T. Unruh, Langmuir 2015, 31, 10130.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVeqsb%2FP&md5=2e87bcacf62e48a3ccab37ed8924ae74CAS |

[33]  S. Sakohara, M. Ishida, M. A. Anderson, J. Phys. Chem. B 1998, 102, 10169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnt12is74%3D&md5=1e05b3ee39e2a6b75121003551d8db3cCAS |

[34]  R. Marczak, D. Segets, M. Voigt, W. Peukert, Adv. Powder Technol. 2010, 21, 41.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislartbg%3D&md5=4e3403e63df906682f6e96feaef22ffaCAS |

[35]  J. Sienkiewicz-Gromiuk, I. Rusinek, Ł. Kurach, Z. Rzączyńska, J. Therm. Anal. Calorim. 2016, 126, 327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XotF2ksb8%3D&md5=c4a1d993ea781c204a4f1f9cd4c148c1CAS |

[36]  Y.-Q. Wang, H. Viswanathan, A. A. Audi, P. M. A. Sherwood, Chem. Mater. 2000, 12, 1100.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Wkt70%3D&md5=61822a38f8c95f829128df4c9b01ee58CAS |

[37]  C. C. Li, Z. F. Du, L. M. Li, H. C. Yu, Q. Wan, T. H. Wang, Appl. Phys. Lett. 2007, 91, 032101.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  H. Wang, H. P. Ho, K. C. Lo, K. W. Cheah, J. Phys. D Appl. Phys. 2007, 40, 4682.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGktrs%3D&md5=b576b7ed6b28a8973d3d3cfb18103dabCAS |

[39]  V. Musat, A. M. Rego, R. Monteiro, E. Fortunato, Thin Solid Films 2008, 516, 1512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFGjtLo%3D&md5=6ad60928309181755343bb7e70ad901dCAS |

[40]  K. K. Nishad, R. K. Pandey, Mater. Sci. Eng. B 2013, 178, 1380.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKqsLfF&md5=f866b4fd04e32060092d528f00906c64CAS |

[41]  R. M. Thankachan, N. Joy, J. Abraham, N. Kalarikkal, S. Thomas, O. S. Oluwafemi, Mater. Res. Bull. 2017, 85, 131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFenu7%2FF&md5=894c0c529e1ddaa646e5dc2f2076fd8bCAS |

[42]  Z. Zhang, X. Dong, J. Tian, S. Liu, Y. Shi, F. Yan, S. Fang, Plasma Chem. Plasma Process. 2015, 35, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVCrsLk%3D&md5=64fd9721bd0d060cc2695d0a162a408cCAS |

[43]  A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Phys. Chem. B 2000, 104, 1715.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlOksg%3D%3D&md5=2d37edf6ffb9346e957749962f22b0a3CAS |

[44]  A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Lumin. 2000, 90, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFKhurk%3D&md5=e53c27625de93b9f1c8a0371c64c14b4CAS |

[45]  K.-F. Lin, H.-M. Cheng, H.-C. Hsu, W.-F. Hsieh, Appl. Phys. Lett. 2006, 88, 263117.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  L. Spanhel, J. Sol-Gel Sci. Technol. 2006, 39, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVelt70%3D&md5=ae88840f1a4956c09101c509f0f6c2b0CAS |

[47]  D. Koziej, A. Lauria, M. Niederberger, Adv. Mater. 2014, 26, 235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVSgsLjL&md5=25f06ddba80a4d6071edea52a68e86c6CAS |

[48]  A. L. Schoenhalz, J. T. Arantes, A. Fazzio, G. M. Dalpian, J. Phys. Chem. C 2010, 114, 18293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KhsL7K&md5=7fdc5c4b87cd8aa1770d7a5065439525CAS |

[49]  T. J. Jacobsson, S. Viarbitskaya, E. Mukhtar, T. Edvinsson, Phys. Chem. Chem. Phys. 2014, 16, 13849.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVantr7O&md5=5d789d51ab834c6d4bce5696637e2e8dCAS |

[50]  Z. Fang, Y. Wang, D. Xu, Y. Tan, X. Liu, Opt. Mater. 2004, 26, 239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltl2gsbo%3D&md5=03a83f0f65803d172275e4ffa194de09CAS |

[51]  Y.-S. Fu, X.-W. Du, S. A. Kulinich, J.-S. Qiu, W.-J. Qin, R. Li, J. Sun, J. Liu, J. Am. Chem. Soc. 2007, 129, 16029.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOnurfI&md5=971c97e4af6739683f13f4553577ab9dCAS |

[52]  T. J. Jacobsson, T. Edvinsson, Inorg. Chem. 2011, 50, 9578.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVylsLjP&md5=ca8b69f8e3680c9ee1105859f726a8beCAS |

[53]  Y. Lv, W. Xiao, W. Li, J. Xue, J. Ding, Nanotechnology 2013, 24, 175702.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  S. B. Zhang, S. H. Wei, A. Zunger, Phys. Rev. B 2001, 63, 075205.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  A. Wood, M. Giersig, M. Hilgendorff, A. Vilas-Campos, L. M. Liz-Marzán, P. Mulvaney, Aust. J. Chem. 2003, 56, 1051.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlaru7k%3D&md5=49018a0fa75baea4cb6a935739e8524aCAS |