Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Highly Sensitive Non-Enzymatic Sensor Based on a Cu/MnO2/g-C3N4-Modified Glassy Carbon Electrode for the Analysis of Hydrogen Peroxide Residues in Food Samples

Gaopeng Dai A , Jingwen Xie A , Cheng Li A and Suqin Liu A B
+ Author Affiliations
- Author Affiliations

A School of Chemical Engineering and Food Science, Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China.

B Corresponding author. Email: liusuqin888@126.com

Australian Journal of Chemistry 70(10) 1118-1126 https://doi.org/10.1071/CH17072
Submitted: 7 February 2017  Accepted: 26 May 2017   Published: 20 June 2017

Abstract

A simple and highly sensitive method for the determination of hydrogen peroxide was developed by electrodepositing Cu and MnO2 onto a g-C3N4 coated glassy carbon electrode in a one-step procedure. The morphology of the fabricated electrode material was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The electrochemical properties were measured using cyclic voltammetry (CV) and chronoamperometry. The modified sensor exhibits high catalytic activity towards electrochemical oxidation of hydrogen peroxide in a neutral phosphate buffer solution. Within the concentration ranges of 0.01–20 mM and 20–400 mM, the fabricated sensor shows a good linear relationship with the oxidation peak current, the detection limit is 0.85 × 10−6 M. Furthermore, the sensor exhibits high selectivity, good stability, and reproducibility. We successfully applied the sensor to detect hydrogen peroxide residues in food samples with satisfactory results, providing a new approach for food security evaluation.


References

[1]  D. Li, L. Meng, S. C. Dang, D. L. Jiang, W. D. Shi, J. Alloys Compd. 2017, 690, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVGgsLrP&md5=f5b8646ca87bedca6c725b72af9dc2bcCAS |

[2]  The Government of the Hong Kong Special Administrative Region – Centre for Food Safety, Use of Hydrogen Peroxide in Food. Available at: http://www.cfs.gov.hk/english/programme/programme_rafs/programme_rafs_fa_02_02.html, 2013 (accessed 5 January 2017).

[3]  R. Zhang, W. Chen, Biosens. Bioelectron. 2017, 89, 249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xit1Siu7s%3D&md5=1d729455ffeaac250a2a41c03fb3993cCAS |

[4]  P. Gimeno, C. Bousquet, N. Lassu, A.-F. Maggio, C. Civade, C. Brenier, L. Lempereur, J. Pharm. Biomed. Anal. 2015, 107, 386.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Oht7k%3D&md5=18a71be3e458967f1570ed183337afa9CAS |

[5]  P. V. Rodionov, E. A. Alieva, E. A. Sergeeva, I. A. Veselova, T. N. Shekhovtsova, J. Anal. Chem. 2016, 71, 932.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlyksrbJ&md5=5bdbf260d62b2286696ddfd91ffd25c7CAS |

[6]  F. M. Qiao, Q. Q. Qi, Z. Z. Wang, K. Xu, S. Y. Ai, Sens. Actuators B 2016, 229, 379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xks1Churw%3D&md5=995fdabc6b66711efdd9eea15302f962CAS |

[7]  J. W. Liu, Y. Luo, Y. M. Wang, L. Y. Duan, J. H. Jiang, R. Q. Yu, ACS Appl. Mater. Interfaces 2016, 8, 33439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvFSit7vL&md5=e0154c7c413bbf85ecaea6c20f972e7dCAS |

[8]  R. Lei, Z. X. Du, Y. H. Qiu, S. F. Zhu, Luminescence 2016, 31, 1158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFSju7bJ&md5=3d30003750ba3310fa2cf20e7c751723CAS |

[9]  R. Zhang, S. He, C. Zhang, W. Chen, J. Mater. Chem. B 2015, 3, 4146.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXms1Kjtrw%3D&md5=bc3320101897ad348f865e1f2affb0adCAS |

[10]  O. Seven, F. Sozmen, I. S. Turan, Sens. Actuators B 2017, 239, 1318.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFyrs73J&md5=652c5b50f40aeb6237024ccd45567bf0CAS |

[11]  X. Y. Lin, Y. N. Ni, S. Kokot, Biosens. Bioelectron. 2016, 79, 685.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XlvVGgsw%3D%3D&md5=a2b55b0660085e901f65584d661effaeCAS |

[12]  H. Y. Song, Y. N. Ni, S. Kokot, Colloids Surf. A 2015, 465, 153.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGqsLnF&md5=1d58ba61e5c262b063c6ecf695576fc7CAS |

[13]  L. L. Feng, R. Wang, Y. L. Shi, H. B. Wang, J. H. Yang, J. Zhu, Y. Chen, N. Yuan, Int. J. Electrochem. Sci. 2016, 11, 5962.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1ymsL7I&md5=3802da4257a2ed724cb31ead0bb69eb1CAS |

[14]  B. Amanulla, S. Palanisamy, S. M. Chen, V. Velusamy, T. W. Chiu, T. W. Chen, S. K. Ramaraj, J. Colloid Interface Sci. 2017, 487, 370.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslGhsLfO&md5=94d3c9a837e2daaabe82abc0e4d433ddCAS |

[15]  J. Ju, W. Chen, Anal. Chem. 2015, 87, 1903.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFehsbbI&md5=c66d999082f8b5abdec53c2f8cd427e2CAS |

[16]  C. Zhang, L. Li, J. Ju, W. Chen, Electrochim. Acta 2016, 210, 181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVSgtrnJ&md5=901b644051a93af80a0eefe39077221dCAS |

[17]  R. Zhang, W. Chen, Sci. Bull. 2015, 60, 522.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjvFemt7k%3D&md5=5d841e1a83ca782712796d24dbacea12CAS |

[18]  B. Zhang, Y. L. Cui, H. F. Chen, B. Q. Liu, G. N. Chen, D. P. Tang, Electroanalysis 2011, 23, 1821.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVWrsrg%3D&md5=37f175452ccf1699ff0c31f987f21a95CAS |

[19]  P. Kanyong, S. Rawlinson, J. Davis, J. Electroanal. Chem. 2016, 766, 147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xis1ejtbw%3D&md5=f7f769ede77bdf4fe9124400296c0500CAS |

[20]  N. Nasirizadeh, S. Hajihosseini, Z. Shekari, M. Ghaani, Food Anal. Methods 2015, 8, 1546.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  N. Nasirizadeh, Z. Shekari, A. Nazari, M. Tabatabaee, J. Food Drug Anal. 2016, 24, 72.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlWls7%2FJ&md5=ec799fe41f730aa45d567f859020be35CAS |

[22]  R. S. Freire, C. A. Pessoa, L. D. Mello, L. T. Kubota, J. Braz. Chem. Soc. 2003, 14, 230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVyhur8%3D&md5=5b3bffc5e1afc7e9adde81b1fda3fba7CAS |

[23]  Y. Zheng, Z. S. Zhang, C. H. Li, J. Mol. Catal. Chem. 2016, 423, 463.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlShu7bI&md5=09305144e4834f38d7894914be17b23aCAS |

[24]  J. L. Zhang, Z. W. Zhu, J. W. Di, Y. M. Long, W. F. Li, Y. F. Tu, Electrochim. Acta 2015, 186, 192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslygsbbL&md5=3c9c4079fcde684dd93d1c1ca792594aCAS |

[25]  H. F. Xu, X. Zhu, Y. Q. Dong, H. S. Wu, Y. M. Chen, Y. W. Chi, Sens. Actuators B 2016, 236, 8.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xps1agtb8%3D&md5=5bbbdce6a71784000e2e14154ef0f4fcCAS |

[26]  S. Q. Zhao, T. M. Liu, M. Sufyan Javed, W. Zeng, S. Hussain, Y. Zhang, X. H. Peng, Electrochim. Acta 2016, 191, 716.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslygsL0%3D&md5=07141b2b15f276d4ca1820b38feac32dCAS |

[27]  M. Liu, S. He, W. Chen, Nanoscale 2014, 6, 11769.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Kkt7zF&md5=654b984523deceec230fc301de42bea3CAS |

[28]  M. Liu, R. Liu, W. Chen, Biosens. Bioelectron. 2013, 45, 206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkslalsr4%3D&md5=1917a8be54a25145e669d890820c768bCAS |

[29]  Q. Li, J. J. He, D. Q. Liu, H. W. Yue, S. Bai, B. L. Liu, L. L. Gu, D. Y. He, J. Alloys Compd. 2017, 693, 970.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1ejtrrL&md5=e8268f7c501c3103f2c3e126f7381707CAS |

[30]  H. D. Liu, Z. L. Hu, Y. Y. Su, H. B. Ruan, R. Hu, L. Zhang, Appl. Surf. Sci. 2017, 392, 777.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFyku77J&md5=4bf3b97c7df1c8ad37b6fc0789deda23CAS |

[31]  X. Q. Wang, L. Dou, L. Yang, J. Y. Yu, B. Ding, J. Hazard. Mater. 2017, 324, 203.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  L. X. Zuo, L. P. Jiang, E. S. Abdel-Halim, J. J. Zhu, Ultrason. Sonochem. 2017, 35, 219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1amt7vK&md5=fd66ba5c405412e0b06f0c3c7857540cCAS |

[33]  T. Zhang, L. Y. Kong, Y. T. Dai, X. J. Yue, J. Rong, F. X. Qiu, J. M. Pan, Chem. Eng. J. 2017, 309, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs12ns7vO&md5=d68ac99bf7a3eb32e1d7b3a9bea6edf0CAS |

[34]  F. Y. Zeng, Y. Pan, Y. Yang, Q. L. Li, G. Y. Li, Z. H. Hou, G. Gu, Electrochim. Acta 2016, 196, 587.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktVyju7Y%3D&md5=447e129625192706c199a96265a90afbCAS |

[35]  S. Zhang, J. B. Zheng, Talanta 2016, 159, 231.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVGiurjI&md5=3907770797d0647de5a975243bd3a6deCAS |

[36]  Z. L. Wu, C. K. Li, J. G. Yua, X. Q. Chen, Sens. Actuators B 2017, 239, 544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlegtrbF&md5=8e6dd60552ebacea90bffb74b6760db5CAS |

[37]  S. He, B. Zhang, M. Liu, W. Chen, RSC Adv. 2014, 4, 49315.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1WjsLnK&md5=c57e58b22a7f75e5ea83085c0a9d615aCAS |

[38]  C. Du, S. J. He, X. H. Gao, W. Chen, ChemCatChem 2016, 8, 2885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlOrtb%2FE&md5=1c9133259df4785dc919801a45314b71CAS |

[39]  J. Gong, G. H. Wei, J. A. Barnard, G. Zangari, Metall. Mater. Trans. A 2005, 36, 2705.
         | Crossref | GoogleScholarGoogle Scholar |