Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Masked Ketenes as Dienophiles in the Diels–Alder Reaction*

Emily G. Mackay A C and Christopher G. Newton B C
+ Author Affiliations
- Author Affiliations

A Organisch-Chemisches Institut, Westfälische Wilhelms Universität, Corrensstrasse 40, 48149 Münster, Germany.

B Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

C Corresponding authors. Email: mackay@wwu.de; christopher.newton@epfl.ch




Emily Mackay is a post-doctoral fellow in the research group of Professor Armido Studer at the Westfälische Wilhelms-Universität in Münster. She was awarded the Ludwig Leichhardt Memorial Fellowship from the Alexander von Humboldt Foundation in 2016. She received her Ph.D. from the Australian National University in 2014, where she researched domino Diels–Alder approaches to steroid synthesis, under the supervision of Professor Michael Sherburn. Her research interests include the application of the Diels–Alder reaction in complex settings and functionalization reactions using electron catalysis.



Christopher Newton obtained his undergraduate degree from Victoria University, New Zealand, and his Ph.D. from the Australian National University under the supervision of Professor Michael Sherburn. His thesis focussed on the synthesis of novel reactive hydrocarbons and their application in the Diels–Alder reaction. In mid-2015, he began a post-doctoral stay as an EPFL Fellow in the group of Professor Nicolai Cramer, Switzerland, working in the fields of ligand design and catalytic enantioselective C–H functionalization.

Australian Journal of Chemistry 69(12) 1365-1374 https://doi.org/10.1071/CH16428
Submitted: 22 July 2016  Accepted: 12 August 2016   Published: 5 September 2016

Abstract

The Diels–Alder reaction is one of the most powerful, well-established, and versatile reactions in organic chemistry; however, its application in certain settings remains a challenge as a result of functional group incompatibility. In this review, we examine the methods in which masked ketenes can be employed as dienophiles, taking particular note of applications in complex settings.


References

[1]  R. B. Woodward, R. Hoffmann, Angew. Chem. Int. Ed. Engl. 1969, 8, 781.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXjsFymtA%3D%3D&md5=4492a6f02238b26d16014b1b25541464CAS |

[2]  A. Streitwieser, Science 1981, 214, 627.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtF2gtLo%3D&md5=8678cb88668bb82ae9a3aa93d5d551bbCAS | 17839634PubMed |

[3]  I. Fleming, Molecular Orbitals and Organic Chemical Reactions (Reference edn) 2011 (John Wiley & Sons, Ltd: Chichester).

[4]  K. C. Nicolaou, S. A. Snyder, T. Montagnon, G. Vassilikogiannakis, Angew. Chem. Int. Ed. 2002, 41, 1668.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFymtbw%3D&md5=3723c63257537dba2e0822c0bd8f6dd5CAS |

[5]  E. G. Mackay, M. S. Sherburn, Synthesis 2014, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  J.-A. Funel, S. Abele, Angew. Chem. Int. Ed. 2013, 52, 3822.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlaks78%3D&md5=301fe599918769153525502a1d3fd097CAS |

[7]  M. M. Heravi, V. F. Vavsari, RSC Adv. 2015, 5, 50890.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXos1ektLY%3D&md5=198318e9496bc26c3663fad888e844baCAS |

[8]  E. J. Corey, Angew. Chem. Int. Ed. 2002, 41, 1650.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFymtb8%3D&md5=fec49009681f0c614edcb889178b6feaCAS |

[9]  O. Diels, K. Alder, Liebigs Ann. 1928, 460, 98.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB1cXpsFyn&md5=d9485e3f29cd933e1d90c3a2b35cec5bCAS |

[10]  T. Gatzenmeier, M. van Gemmeren, Y. Xie, D. Höfler, M. Leutzsch, B. List, Science 2016, 351, 949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XivFOnt7o%3D&md5=7a285577892c258007127c0e101582d6CAS | 26917765PubMed |

[11]  E. G. Mackay, M. Nörret, L. S. M. Wong, I. Louis, A. L. Lawrence, A. C. Willis, M. S. Sherburn, Org. Lett. 2015, 17, 5517.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVejtbfK&md5=d378d50dcac3c8d7a37ef3481d3926d9CAS | 26523759PubMed |

[12]  J. E. Sears, D. L. Boger, Acc. Chem. Res. 2016, 49, 241.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVygsL8%3D&md5=faf189a6cf5a96d0dd530bdf0b1f8275CAS | 26813287PubMed |

[13]  S. L. Drew, A. L. Lawrence, M. S. Sherburn, Chem. Sci. 2015, 6, 3886.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvFWnsLw%3D&md5=97af34977ddfdacefcd5eb43f2a59bc3CAS |

[14]  R. T. Larson, R. P. Pemberton, J. M. Franke, D. J. Tantillo, R. J. Thomson, J. Am. Chem. Soc. 2015, 137, 11197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlygt73N&md5=270d1e01fd5f60b4abbbfca28834a2b8CAS | 26305231PubMed |

[15]  C. Wan, J. Deng, H. Liu, M. Bian, A. Li, Sci. China Chem. 2014, 57, 926.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptlKqt7g%3D&md5=b88321b054df1af8c30f641bcb503b6aCAS |

[16]  R. S. Harvey, E. G. Mackay, L. Roger, M. N. Paddon-Row, M. S. Sherburn, A. L. Lawrence, Angew. Chem. Int. Ed. 2015, 54, 1795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVygt7jO&md5=1ec9cb5f80359e8d9ab19cfe26ee8904CAS |

[17]  S. L. Drew, A. L. Lawrence, M. S. Sherburn, Angew. Chem. Int. Ed. 2013, 52, 4221.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsVKruro%3D&md5=b90af3f34600f92aaa0164c0c05b1419CAS |

[18]  E. G. Mackay, M. S. Sherburn, Pure Appl. Chem. 2013, 85, 1227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpslKnsL4%3D&md5=dd3edec26dc6ad2055447b72297721ceCAS |

[19]  H. Hopf, M. S. Sherburn, Angew. Chem. Int. Ed. 2012, 51, 2298.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xitlygsr0%3D&md5=1abb9ff20dde85e646053abf19baeebcCAS |

[20]  M. S. Sherburn, Acc. Chem. Res. 2015, 48, 1961.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFWqt77P&md5=f696f3cb89dc744e4ba2733337614472CAS | 26151489PubMed |

[21]  C. G. Newton, M. S. Sherburn, in Cross Conjugation: Modern Dendralene, Radialene and Fulvene Chemistry (Eds H. Hopf, M. S. Sherburn) 2016, pp. 413–443 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).

[22]  K. M. Cergol, C. G. Newton, A. L. Lawrence, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, Angew. Chem. Int. Ed. 2011, 50, 10425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOls7rI&md5=e0887c575f2511c38e68020bf4d3ff5dCAS |

[23]  M. E. Jung, F. Perez, C. F. Regan, S. W. Yi, Q. Perron, Angew. Chem. Int. Ed. 2013, 52, 2060.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFyqtA%3D%3D&md5=0f6e7523ce9b7c7950957ac9cdd84cb0CAS |

[24]  E. Taarning, R. Madsen, Chem. – Eur. J. 2008, 14, 5638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslamsLw%3D&md5=9ec15ab836badc9f329c7751136f5ed5CAS | 18470851PubMed |

[25]  S. Yamabe, T. Dai, T. Minato, T. Machiguchi, T. Hasegawa, J. Am. Chem. Soc. 1996, 118, 6518.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjs1Grsbo%3D&md5=ee01e2ba9ef91a45c436e477b9f9101fCAS |

[26]  U. Salzner, S. M. Bachrach, J. Org. Chem. 1996, 61, 237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtlGqtg%3D%3D&md5=a5e1f06d6030ddbd74a17fd94b5ad838CAS |

[27]  E. Vogel, K. Müller, Liebigs Ann. 1958, 615, 29.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXit12ntw%3D%3D&md5=7ee8b774da957fdc045f970a357a15dfCAS |

[28]  S. Ranganathan, D. Ranganathan, A. K. Mehrotra, Synthesis 1977, 289.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXksFarsb0%3D&md5=24b2bb8e0e795764b2e9eab9d472bc47CAS |

[29]  V. K. Aggarwal, A. Ali, M. P. Coogan, Tetrahedron 1999, 55, 293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVaitA%3D%3D&md5=14253506c0694fc2c429acb7d1972bd6CAS |

[30]  P. A. Wender, V. A. Verma, T. J. Paxton, T. H. Pillow, Acc. Chem. Res. 2008, 41, 40.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOntL3E&md5=cb67027ea5105f047a9a1045007f6504CAS | 18159936PubMed |

[31]  P. D. Bartlett, B. E. Tate, J. Am. Chem. Soc. 1956, 78, 2473.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXhs1al&md5=9a0f408e4f6daf4902776ab0c5d3cb4fCAS |

[32]  P. S. Wharton, B. T. Aw, J. Org. Chem. 1966, 31, 3787.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  D. MaGee, M. Lee, Synlett 1997, 786.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1ahsLk%3D&md5=88b6950005dd56175c115c7f2f2f3cdcCAS |

[34]  J. -L. Reymond, P. Vogel, J. Chem. Soc. Chem. Commun. 1990, 1070.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXot1ahsQ%3D%3D&md5=487c139038f99720a7ff9437ed386cf7CAS |

[35]  P. Vogel, D. Fattori, F. Gasparini, C. Le Drian, Synlett 1990, 173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXht1aqs7Y%3D&md5=daa09780054ee70720be2f158de67baeCAS |

[36]  J. L. Reymond, P. Vogel, Tetrahedron Asymmetry 1990, 1, 729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVyntr8%3D&md5=2b3fba98949c279e9c3e79b12b52507fCAS |

[37]  F. Claret, P. -A. Carrupt, P. Vogel, Helv. Chim. Acta 1987, 70, 1886.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktlOlu78%3D&md5=93f8f63c5eedab986705f99d722dd79aCAS |

[38]  E. Vieira, P. Vogel, Helv. Chim. Acta 1983, 66, 1865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXosFGhsw%3D%3D&md5=8e25d6a32845a40b7381ead034438351CAS |

[39]  P. Kernen, P. Vogel, Tetrahedron Lett. 1993, 34, 2473.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltFOlu7o%3D&md5=03e76b5c9000edfe630b0e50e951aca4CAS |

[40]  J. R. Bull, C. Grundler, H. Laurent, R. Bohlmann, A. Müller-Fahrnow, Tetrahedron 1994, 50, 6347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsFKisrc%3D&md5=66f8e200f5ec583397707fb2bb617accCAS |

[41]  P. Uebelhart, C. Weymuth, A. Linden, H.-J. Hansen, Helv. Chim. Acta 2007, 90, 659.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFequ7s%3D&md5=be3c797ff0715f3c0c1ed51710292e95CAS |

[42]  T. Graening, H. -G. Schmalz, Angew. Chem. Int. Ed. 2004, 43, 3230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsF2gs7c%3D&md5=ad796615c85681a369f1e7136bddad0bCAS |

[43]  J. Paasi-virta, H. Krieger, Suom. Kemistil. 1965, B38, 182.
         | 1:CAS:528:DyaF28XislWlug%3D%3D&md5=359df0962e42b5154dbd2bbb022ef375CAS |

[44]  H. Krieger, K. Manninen, J. Paasi-virta, Suom. Kemistil. 1966, B39, 8.

[45]  E. J. Corey, N. M. Weinshenker, T. K. Schaaf, W. Huber, J. Am. Chem. Soc. 1969, 91, 5675.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXltVWgtLg%3D&md5=30d97e527f05b44fb951a0a46b98257cCAS | 5808505PubMed |

[46]  K. C. Nicolaou, E. J. Sorensen, Classics in Total Synthesis: Targets, Strategies, Methods 1996 (Wiley-VCH: Weinheim).

[47]  C. S. Shiner, A. M. Fisher, F. Yacoby, Tetrahedron Lett. 1983, 24, 5687.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhsFKhtLk%3D&md5=456a5ab335c60af6a0c9eb9fe5094cadCAS |

[48]  D. A. Evans, W. L. Scott, L. K. Truesdale, Tetrahedron Lett. 1972, 13, 121.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  A. Coop, D. Y. Maeda, Heterocycles 2001, 55, 1147.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  M. G. Banwell, G. R. Clark, D. C. R. Hockless, S. Pallich, Aust. J. Chem. 2001, 54, 691.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Cjsr0%3D&md5=6df8e2fe11736c5c58d691fc5fa32f74CAS |

[51]  S. J. Selikson, D. S. Watt, J. Org. Chem. 1975, 40, 267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXos1Wltw%3D%3D&md5=d7a279a735c0bdf2a383e78fadbfa9f4CAS |

[52]  J. W. Lewis, M. J. Readhead, I. A. Selby, A. C. B. Smith, C. A. Young, J. Chem. Soc. C 1971, 1158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXktVKitrY%3D&md5=b313ca5e4697a2c2420702cb28209af7CAS |

[53]  J. W. Lewis, M. J. Readhead, A. C. B. Smith, J. Med. Chem. 1973, 16, 84.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXpt1Cjtw%3D%3D&md5=85ae39ea5bdf35ab634658a42cd7e4e5CAS | 4682204PubMed |

[54]  J. -A. Funel, G. Schmidt, S. Abele, Org. Process Res. Dev. 2011, 15, 1420.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFWhtbo%3D&md5=f2cc24544599a7abff88c8e41cb758d7CAS |

[55]  P. K. Freeman, D. M. Balls, D. J. Brown, J. Org. Chem. 1968, 33, 2211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXkt1Krtrs%3D&md5=80f81211fd265ff8d09397f3ef7756ebCAS |

[56]  S. N. Maiti, R. Ling, J. Yip, C. Gao, D. Nguyen, U.S. Patent 20110288063 A1 2011.

[57]  K. C. Nicolaou, C. K. Hwang, E. J. Sorensen, C. F. Clairborne, J. Chem. Soc. Chem. Commun. 1992, 1117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtFaktrw%3D&md5=c87dbd49861d7f3ac832ae0717925b80CAS |

[58]  K. C. Nicolaou, J. J. Liu, Z. Yang, H. Ueno, E. J. Sorensen, C. F. Claiborne, R. K. Guy, C. K. Hwang, M. Nakada, P. G. Nantermet, J. Am. Chem. Soc. 1995, 117, 634.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivFyjsLo%3D&md5=41b29ba069d1705cf48f21d10e601005CAS |

[59]  T. Masamune, A. Fukuzawa, A. Furusaki, M. Ikura, H. Matsue, T. Kaneko, A. Abiko, N. Sakamoto, N. Tanimoto, M. Akio, Bull. Chem. Soc. Jpn. 1987, 60, 1001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXnsFKlsQ%3D%3D&md5=d9b037c1d349ce44d10563dd7b677924CAS |

[60]  J. E. Baldwin, M. Otsuka, P. M. Wallace, J. Chem. Soc. Chem. Commun. 1985, 1549.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitVKqu7g%3D&md5=538d3bdbf18e43b2bf73604f93ff2368CAS |

[61]  E. J. Alvarez-Manzaneda, R. Chahboun, E. Cabrera, E. Alvarez, A. Haidour, J. M. Ramos, R. Alvarez-Manzaneda, M. Hmamouchi, H. Bouanou, J. Org. Chem. 2007, 72, 3332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVOrsb8%3D&md5=d40561caa1000225d9726a70c03ab38bCAS | 17388632PubMed |

[62]  W. C. Wildman, R. B. Wildman, J. Org. Chem. 1952, 17, 581.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXptFer&md5=1cb958b93a56cf041217b1f849a756a2CAS |

[63]  S. Ranganathan, D. Ranganathan, A. K. Mehrotra, J. Am. Chem. Soc. 1974, 96, 5261.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXltVCrs7s%3D&md5=72a550aa023c132588cea67392e8a723CAS |

[64]  G. Mehta, D. Subrahmanyam, J. Chem. Soc., Perkin Trans. 1 1991, 395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVOmsb4%3D&md5=7c49e01e7c724eba9034e5e006f843d7CAS |

[65]  C. M. Moorhoff, L. A. Paquette, J. Org. Chem. 1991, 56, 703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXotFSksw%3D%3D&md5=cb3f5c8558342778998306a84e0aaf34CAS |

[66]  H. E. Zimmerman, P. Wang, J. Org. Chem. 2002, 67, 9216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFykurs%3D&md5=71e6dc8331006df66bcc766aabe75d61CAS | 12492323PubMed |

[67]  K. E. Lazarski, D. X. Hu, C. L. Stern, R. J. Thomson, Org. Lett. 2010, 12, 3010.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFaktLs%3D&md5=8a6c3581468e1948c7cb60d930c0064fCAS | 20521835PubMed |

[68]  E. J. Corey, A. G. Myers, J. Am. Chem. Soc. 1985, 107, 5574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlslyntbo%3D&md5=774397451fa9314b595f3343b7077323CAS |

[69]  C. Zheng, I. Dubovyk, K. E. Lazarski, R. J. Thomson, J. Am. Chem. Soc. 2014, 136, 17750.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFans7nJ&md5=eef967a16f9074f1d66bc29b24eb0c94CAS | 25495370PubMed |

[70]  K. C. Nicolaou, C. J. N. Mathison, T. Montagnon, Angew. Chem. Int. Ed. 2003, 42, 4077.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslSlsbw%3D&md5=7c9b9dd5839402fef842f4ecc86b4d37CAS |

[71]  K. C. Nicolaou, C. J. N. Mathison, T. Montagnon, J. Am. Chem. Soc. 2004, 126, 5192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisl2itr8%3D&md5=e9794c776bd87705e03032d8bad79ff3CAS | 15099102PubMed |

[72]  C. G. Newton, S. L. Drew, A. L. Lawrence, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, Nat. Chem. 2014, 7, 82.
         | Crossref | GoogleScholarGoogle Scholar | 25515894PubMed |

[73]  W. Adam, M. Makosza, C. R. Saha-Möller, C. -G. Zhao, Synlett 1998, 1335.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXot1Kq&md5=ca5f2cbeaf5352130c6be36f0f591de2CAS |

[74]  C. G. Newton, M. S. Sherburn, Nat. Prod. Rep. 2015, 32, 865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXms1GqtL4%3D&md5=24c2479e9864c764ff78a2b907de19b0CAS | 25882677PubMed |

[75]  M. J. Narcis, D. J. Sprague, B. Captain, N. Takenaka, Org. Biomol. Chem. 2012, 10, 9134.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1equ7nP&md5=8616f5400fc2492c798fc995531f4d1dCAS | 23104427PubMed |

[76]  Z.-J. Jia, Q. Zhou, Q.-Q. Zhou, P.-Q. Chen, Y.-C. Chen, Angew. Chem. Int. Ed. 2011, 50, 8638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFOjt7o%3D&md5=8dfc056c2965edbcd2708340b5269c59CAS |

[77]  J.-G. Fu, Y.-F. Shan, W.-B. Sun, G. -Q. Lin, B. -F. Sun, Org. Biomol. Chem. 2016, 14, 5229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XotF2qs7w%3D&md5=0623b69489e7bc01f240157707a9541bCAS | 27219468PubMed |

[78]  E. J. Corey, T. Ravindranathan, S. Terashima, J. Am. Chem. Soc. 1971, 93, 4326.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXltV2qs7Y%3D&md5=61a200f6e607e4730b4c765a0da7ece0CAS |

[79]  C. S. Marvel, J. Dec, H. G. Cooke, J. C. Cowan, J. Am. Chem. Soc. 1940, 62, 3495.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH3MXmsVGq&md5=a02c2b0c83f1cb73d499f09d3bc985a9CAS |

[80]  E. J. Corey, N. Imai, S. Pikul, Tetrahedron Lett. 1991, 32, 7517.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtVGqs74%3D&md5=00c1d015b7f0a7655bc5c9090067487aCAS |

[81]  W. Oppolzer, C. Chapuis, D. Dupuis, M. Guo, Helv. Chim. Acta 1985, 68, 2100.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhslKltb8%3D&md5=6516cd6edb07fb58286676a58014b00bCAS |

[82]  C. Ebner, E. M. Carreira, Angew. Chem. Int. Ed. 2015, 54, 11227.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1KitbjE&md5=cc02f81aac524e9949a7e4ec3f6908afCAS |

[83]  R. L. Snowden, S. M. Linder, M. Wüst, Helv. Chim. Acta 1989, 72, 892.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhsFOksLs%3D&md5=d6b02a6bba86115b035b0d794b069dd4CAS |

[84]  P. Li, J. N. Payette, H. Yamamoto, J. Am. Chem. Soc. 2007, 129, 9534.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVSiu78%3D&md5=eb97f94668c1e7263af35192492f06e9CAS | 17630748PubMed |

[85]  J. N. Payette, H. Yamamoto, J. Am. Chem. Soc. 2007, 129, 9536.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1Ckurk%3D&md5=79a0aa07c0ec91852f1672ffe4df5835CAS | 17630749PubMed |

[86]  J. N. Payette, H. Yamamoto, J. Am. Chem. Soc. 2008, 130, 12276.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVChsL%2FM&md5=bf266ca0dc63dbf0211991a11d4603dcCAS | 18722431PubMed |

[87]  K. C. Nicolaou, A. Li, D. J. Edmonds, Angew. Chem. Int. Ed. 2006, 45, 7086.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ans7bL&md5=228841dfa3cb7dbffdce594f3e3f6c74CAS |

[88]  M. Olbrich, P. Mayer, D. Trauner, Org. Biomol. Chem. 2014, 12, 108.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKjt73O&md5=3ac4c4e2a8e6b7a698957080ae35024fCAS | 24217004PubMed |

[89]  S. Mukherjee, A. P. Scopton, E. J. Corey, Org. Lett. 2010, 12, 1836.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVeju7k%3D&md5=109827cf03d67082cec0fc09594f2cccCAS | 20337419PubMed |

[90]  P. Metz, M. Fleischer, R. Fröhlich, Tetrahedron 1995, 51, 711.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsVGqtL0%3D&md5=177ed5a0f2faf91bf8710d481855187bCAS |

[91]  S. Doye, T. Hotopp, E. Winterfeldt, Chem. Commun. 1997, 1491.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvV2ntrs%3D&md5=28a3397c6ff809124ceba5699cc12dcdCAS |

[92]  M. Brüggemann, A. I. McDonald, L. E. Overman, M. D. Rosen, L. Schwink, J. P. Scott, J. Am. Chem. Soc. 2003, 125, 15284.
         | Crossref | GoogleScholarGoogle Scholar | 14664560PubMed |

[93]  N. P. Pavri, M. L. Trudell, Tetrahedron Lett. 1997, 38, 7993.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsV2hu7w%3D&md5=166bdca5b1c516d9814b19e4cdf0d765CAS |

[94]  S. R. Fletcher, R. Baker, M. S. Chambers, S. C. Hobbs, P. J. Mitchell, J. Chem. Soc. Chem. Commun. 1993, 1216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVOnsbs%3D&md5=f18a99538bdd2a456607e1ea7bdd3ee0CAS |

[95]  H. H. Wasserman, B. H. Lipshutz, Tetrahedron Lett. 1975, 16, 4611.
         | Crossref | GoogleScholarGoogle Scholar |

[96]  B. M. Trost, Y. Tamaru, J. Am. Chem. Soc. 1975, 97, 3528.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXkslOkurg%3D&md5=7a45abf0bfaaf84d9f1b34704d329713CAS |

[97]  T. Sasaki, Y. Ishibashi, M. Ohno, Tetrahedron Lett. 1982, 23, 1693.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XltV2ktL4%3D&md5=6684699091d2ad195fb55be7e25aff1dCAS |

[98]  V. K. Aggarwal, D. E. Jones, A. M. Martin-Castro, Eur. J. Org. Chem. 2000, 2939.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtV2lsL4%3D&md5=fe38940e25bd4812c7c433249162779eCAS |

[99]  T. G. Back, D. Wehrli, Synlett 1995, 1123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslCrtL0%3D&md5=265e1e21ae36fbfc04a37c5710b13482CAS |

[100]  E. Wenkert, C. Vial, F. Näf, Chimia 1992, 46, 95.
         | 1:CAS:528:DyaK38Xks12ntbY%3D&md5=0a8d8ee6a5981dca97f37910a6c0fb74CAS |

[101]  D. A. Singleton, J. P. Martinez, J. Am. Chem. Soc. 1990, 112, 7423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsFamsLk%3D&md5=35e746157d38e8bfb199ab880ca25fc2CAS |

[102]  D. A. Singleton, J. P. Martinez, J. V. Watson, Tetrahedron Lett. 1992, 33, 1017.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvFekt7g%3D&md5=fa677c75e7700e7731c38df44ed390faCAS |

[103]  D. A. Singleton, J. P. Martinez, J. V. Watson, G. M. Ndip, Tetrahedron 1992, 48, 5831.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtFamt7s%3D&md5=d669e9659c039e8f5803b162d7883bc9CAS |

[104]  D. A. Singleton, J. P. Martinez, Tetrahedron Lett. 1991, 32, 7365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht12jsr0%3D&md5=d1b6feda714a739a24814fad8c3ac21bCAS |