Transition Metal-Promoted Arylation: An Emerging Strategy for Protein Bioconjugation*
Lara R. Malins AA Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. Email: malins@scripps.edu
Australian Journal of Chemistry 69(12) 1360-1364 https://doi.org/10.1071/CH16416
Submitted: 18 July 2016 Accepted: 12 September 2016 Published: 10 October 2016
Abstract
Transition metal-mediated arylation chemistry is emerging as a powerful tool for the selective modification of native peptides and proteins, providing new opportunities in the field of bioconjugation. This highlight paper will summarize recent methodologies for the regio- and chemoselective arylation of select proteinogenic side chains and backbone amide N–H bonds within unprotected peptides and proteins. The importance of the metal–ligand complex in achieving tunable selectivity and the inherent benefits of arylation as a mode of covalent protein modification will be highlighted.
References
[1] (a) C. D. Spicer, B. G. Davis, Nat. Commun. 2014, 4740.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVeksb4%3D&md5=cc74f3b2512ff075852d437738a0c2efCAS | 25190082PubMed |
(b) O. Boutureira, G. J. Bernardes, Chem. Rev. 2015, 115, 2174.
| Crossref | GoogleScholarGoogle Scholar |
[2] R. V. J. Chari, M. L. Miller, W. C. Widdison, Angew. Chem. Int. Ed. 2014, 53, 3796.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtVGmsr0%3D&md5=6189adad9463d03421d6df26cd02bf1bCAS |
[3] Y. H. Lau, P. de Andrade, Y. Wu, D. R. Spring, Chem. Soc. Rev. 2015, 44, 91.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2mtb%2FL&md5=ceeb62c0c4c96ac750ea9a37bf80e00bCAS | 25199043PubMed |
[4] (a) C. Walsh, Post-Translational Modification of Proteins: Expanding Nature’s Inventory 2006 (Roberts and Co. Publishers: Englewood, CO).
(b) C. T. Walsh, S. Garneau-Tsodikova, G. J. Gatto, Angew. Chem. Int. Ed. 2005, 44, 7342.
| Crossref | GoogleScholarGoogle Scholar |
[5] N. Stephanopoulos, M. B. Francis, Nat. Chem. Biol. 2011, 7, 876.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOisbbP&md5=429f41e33de8af0251aa81269b7b7ad1CAS | 22086289PubMed |
[6] (a) G. T. Hermanson, Bioconjugate Techniques (3rd edn) 2013 (Academic Press: Boston, MA).
(b) G. J. L. Bernardes, J. M. Chalker, B. G. Davis, in Ideas in Chemistry and Molecular Sciences (Ed. B. Pignataro) 2010, pp. 59–91 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).
[7] (a) K. Lang, J. W. Chin, Chem. Rev. 2014, 114, 4764.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkslamtrY%3D&md5=769f3507405299b28fe5c2086605d592CAS | 24655057PubMed |
(b) W. H. Zhang, G. Otting, C. J. Jackson, Curr. Opin. Struct. Biol. 2013, 23, 581.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. M. Sletten, C. R. Bertozzi, Angew. Chem. Int. Ed. 2009, 48, 6974.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. H. Kim, J. Y. Axup, P. G. Schultz, Curr. Opin. Chem. Biol. 2013, 17, 412.
| Crossref | GoogleScholarGoogle Scholar |
[8] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Ohsr4%3D&md5=fe9f6b13c78335a5d346bc92864dea5dCAS |
[9] Y. A. Lin, J. M. Chalker, B. G. Davis, ChemBioChem 2009, 10, 959.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVOlt7g%3D&md5=2ab29a3375d63cf0426011ac4a4b5226CAS | 19343741PubMed |
[10] J. M. McFarland, M. B. Francis, J. Am. Chem. Soc. 2005, 127, 13490.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslequrk%3D&md5=d6f8a2a0a81c361f51a8edf1acff0d69CAS | 16190700PubMed |
[11] S. D. Tilley, M. B. Francis, J. Am. Chem. Soc. 2006, 128, 1080.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVymsw%3D%3D&md5=589aa5537e4affc148afbe1872103679CAS | 16433516PubMed |
[12] J. M. Antos, M. B. Francis, J. Am. Chem. Soc. 2004, 126, 10256.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVOjtrc%3D&md5=d48de9fb95ac241874a507bf9df55f78CAS | 15315433PubMed |
[13] (a) J. M. Antos, M. B. Francis, Curr. Opin. Chem. Biol. 2006, 10, 253.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltlKkt7c%3D&md5=c37c18dd4ffee417a7b9b6a13ab027d3CAS | 16698310PubMed |
(b) J. H. van Maarseveen, J. N. Reek, J. W. Back, Angew. Chem. Int. Ed. 2006, 45, 1841.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Yang, J. Li, P. R. Chen, Chem. Soc. Rev. 2014, 43, 6511.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. F. Noisier, M. A. Brimble, Chem. Rev. 2014, 114, 8775.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) A. M. Spokoyny, Y. Zou, J. J. Ling, H. Yu, Y. S. Lin, B. L. Pentelute, J. Am. Chem. Soc. 2013, 135, 5946.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsV2gtrc%3D&md5=2266a9d99a353bd9cb567db56a5a24bcCAS | 23560559PubMed |
(b) S. P. Brown, A. B. Smith, J. Am. Chem. Soc. 2015, 137, 4034.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. Lautrette, F. Touti, H. G. Lee, P. Dai, B. L. Pentelute, J. Am. Chem. Soc. 2016, 138, 8340.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. Zhang, M. Welborn, T. Zhu, N. J. Yang, M. S. Santos, T. Van Voorhis, B. L. Pentelute, Nat. Chem. 2016, 8, 120.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Kalhor-Monfared, M. R. Jafari, J. T. Patterson, P. I. Kitov, J. J. Dwyer, J. M. Nuss, R. Derda, Chem. Sci. 2016, 7, 3785.
| Crossref | GoogleScholarGoogle Scholar |
[15] E. V. Vinogradova, C. Zhang, A. M. Spokoyny, B. L. Pentelute, S. L. Buchwald, Nature 2015, 526, 687.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslCnu7zK&md5=309e6582a882d9248aaeb2be85f6450cCAS | 26511579PubMed |
[16] J. Willwacher, R. Raj, S. Mohammed, B. G. Davis, J. Am. Chem. Soc. 2016, 138, 8678.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVGjtLrF&md5=f955cfa383491a169a347f8978bb1069CAS | 27336299PubMed |
[17] A. Bock, K. Forchhammer, J. Heider, W. Leinfelder, G. Sawers, B. Veprek, F. Zinoni, Mol. Microbiol. 1991, 5, 515.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3mtVCgtw%3D%3D&md5=e7131a81cedc2ce49cdb6af9652b31b1CAS | 1828528PubMed |
[18] B. J. Byun, Y. K. Kang, Biopolymers 2011, 95, 345.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitlKrtrc%3D&md5=8248b9194895a247178ebab1b0323f76CAS | 21213257PubMed |
[19] (a) L. Johansson, G. Gafvelin, E. S. J. Arner, Biochim. Biophys. Acta, Gen. Subj. 2005, 1726, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKns7fE&md5=47b9445d6fd17d720520d5cc1adfccb2CAS |
(b) J. Lu, A. Holmgren, J. Biol. Chem. 2009, 284, 723.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) L. R. Malins, N. J. Mitchell, R. J. Payne, J. Pept. Sci. 2014, 20, 64.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGgtLzP&md5=20a1aff93d0c22a6ad44b5b4a318a7acCAS | 24285588PubMed |
(b) D. Besse, F. Siedler, T. Diercks, H. Kessler, L. Moroder, Angew. Chem. Int. Ed. Engl. 1997, 36, 883.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. Nauser, S. Dockheer, R. Kissner, W. H. Koppenol, Biochemistry 2006, 45, 6038.
| Crossref | GoogleScholarGoogle Scholar |
[21] D. T. Cohen, C. Zhang, B. L. Pentelute, S. L. Buchwald, J. Am. Chem. Soc. 2015, 137, 9784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1KmsrnK&md5=26a04177710e07a219becda80b2ec853CAS | 26225900PubMed |
[22] J. Ohata, M. B. Minus, M. E. Abernathy, Z. T. Ball, J. Am. Chem. Soc. 2016, 138, 7472.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XptVKrur4%3D&md5=f9cb4a6277974c655b0f39696eb2d008CAS | 27249339PubMed |
[23] (a) U. Kazmaier, J. Deska, Curr. Org. Chem. 2008, 12, 355.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Chatterjee, F. Rechenmacher, H. Kessler, Angew. Chem. Int. Ed. 2013, 52, 254.
| Crossref | GoogleScholarGoogle Scholar |