A Novel 3D Salen Neodymium Framework with Near-Infrared (NIR) Properties
Shushen Chi A , Hongfeng Li A , Peng Chen A , Ting Gao A B C , Yu Yang A , Wenbin Sun A , Guangming Li A , Guangfeng Hou A and Pengfei Yan A CA Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, China.
B Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, College of Heilongjiang Province, No. 74, Xuefu Road, Nangang District, Harbin 150080, China.
C Corresponding authors. Email: gaotingmail@sina.cn; yanpf@vip.sina.com
Australian Journal of Chemistry 70(3) 265-270 https://doi.org/10.1071/CH16372
Submitted: 23 June 2016 Accepted: 25 July 2016 Published: 2 September 2016
Abstract
The reaction of N,N′-bis(3-hydroxy)ethylene-1,2-diamine (H2salen) with Nd(NO3)3·6H2O and NdCl3·6H2O yields a novel lanthanide complex, namely, Nd(salen)2(NO3)2Cl (1). X-ray crystallographic analysis revealed that H2salen effectively functions as a bridging ligand forming a kind of novel 3D structure complex which is constructed by Salen ligands and mixed lanthanide counter-ions without π–π stacking and hydrogen bond interactions. This is the first Salen-type 3D lanthanide complex to be constructed in this way. The near-infrared (NIR) properties of 1 in the solid state were also studied.
References
[1] M. H. V. Werts, R. H. Woudenberg, P. G. Emmerink, R. van Gassel, J. W. Hofstraat, J. W. Verhoeven, Angew. Chem. 2000, 112, 4716.| Crossref | GoogleScholarGoogle Scholar |
[2] K. Kuriki, Y. Koike, Y. Okamoto, Chem. Rev. 2002, 102, 2347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtlOhu7Y%3D&md5=c26e3f5be40b6eed0822edd7d3db9f7bCAS | 12059270PubMed |
[3] P. Sonar, S. G. Santamaria, T. T. Lin, A. Sellinger, H. Bolink, Aust. J. Chem. 2012, 65, 1244.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWksbzN&md5=557cf52a8b32814c272f2f51c36b25c5CAS |
[4] J. Kido, Y. Okamoto, Chem. Rev. 2002, 102, 2357.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1Snt70%3D&md5=4aac4778363fcb9f3835eb5bc62dd370CAS | 12059271PubMed |
[5] W. X. Feng, Y. N. Hui, T. Wei, X. Q. Lü, J. R. Song, Z. N. Chen, S. S. Zhao, W. -K. Wong, R. A. Jones, Inorg. Chem. Commun. 2011, 14, 75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFOjug%3D%3D&md5=d674538de7c306c775cc813604d2a8a1CAS |
[6] A. Beeby, R. S. Dickins, S. FitzGerald, L. J. Govenlock, C. L. Maupin, D. Parker, J. P. Riehl, G. Siligardi, J. A. G. Williams, Chem. Commun. 2000, 1183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVelurY%3D&md5=39b483af1735c3a80a977c48d04a47d1CAS |
[7] N. Sabbatini, M. Guardigli, J. M. Lehn, Coord. Chem. Rev. 1993, 123, 201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsFOls7w%3D&md5=6051171c77f8b682fe4a753b53809035CAS |
[8] A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFWgt7c%3D&md5=79b68e6ceb5b9df76180fddaee5c49d1CAS | 12797812PubMed |
[9] A. Roigk, R. Hettich, H. J. Schneider, Inorg. Chem. 1998, 37, 751.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1Kisw%3D%3D&md5=659cf8e05b647e2d697cf3e486caec9aCAS |
[10] R. X. Chen, T. Gao, W. B. Sun, H. F. Li, Y. H. Wu, M. M. Xu, X. Y. Zou, P. F. Yan, Inorg. Chem. Commun. 2015, 56, 79.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsl2isLY%3D&md5=ac94ce147ec790bd0946f1f0b815d204CAS |
[11] Y. E. Luo, Y. Ma, P. Y. Su, X. Q. Lü, X. J. Zhu, W. K. Wong, R. A. Jones, Inorg. Chem. Commun. 2015, 61, 181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1SktbnF&md5=4c937c97e15e182dd046ed0403dad43eCAS |
[12] W. K. Lo, W. K. Wong, W. Y. Wong, J. P. Guo, K. T. Yeung, Y. K. Cheng, X. P. Yang, R. A. Jones, Inorg. Chem. 2006, 45, 9315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVyhtrzN&md5=b7a0945604af2949b2b139dbf0599107CAS | 17083231PubMed |
[13] W. K. Wong, X. P. Yang, R. A. Jones, J. H. Rivers, V. Lynch, W. K. Lo, D. Xiao, M. M. Oye, A. L. Holmes, Inorg. Chem. 2006, 45, 4340.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVSks7w%3D&md5=6de3a955c05800a58bd64c55a718c44bCAS | 16711681PubMed |
[14] X. P. Yang, R. A. Jones, W. K. Wong, V. Lynch, M. M. Oye, A. L. Holmes, Chem. Commun. 2006, 1836.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFemtrg%3D&md5=6758c035637586b748c73b51c5315809CAS |
[15] T. Gao, L. L. Xu, Q. Zhang, G. M. Li, P. F. Yan, Inorg. Chem. Commun. 2012, 26, 60.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1KqsL3N&md5=77ec0f274147b8c07bbcacf83db0cb45CAS |
[16] S. S. Zhao, X. Q. Lu, A. X. Hou, W. Y. Wong, W. K. Wong, X. P. Yang, R. A. Jones, Dalton Trans. 2009, 9595.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWhtbnE&md5=5c3c59a00bceff4bb35b786e896156b9CAS |
[17] W. Y. Bi, T. Wei, X. Q. Lu, Y. N. Hui, J. R. Song, W. K. Wong, R. A. Jones, New J. Chem. 2009, 33, 2326.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWks7zM&md5=eace7a702b499060ae1c33a27a0b7bc8CAS |
[18] X. Q. Lu, W. X. Feng, Y. N. Hui, T. Wei, J. R. Song, S. S. Zhao, W. Y. Wong, W. K. Wong, R. A. Jones, Eur. J. Inorg. Chem. 2010, 2714.
| Crossref | GoogleScholarGoogle Scholar |
[19] S. V. Eliseeva, J. C. G. Bünzli, Chem. Soc. Rev. 2010, 39, 189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGrsrrK&md5=842f5019a1fef65f486edb6c20a690deCAS | 20023849PubMed |
[20] W. Dou, J. N. Yao, W. S. Liu, Y. W. Wang, J. R. Zheng, D. Q. Wang, Inorg. Chem. Commun. 2007, 10, 105.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12mtrbL&md5=be263f1dea498e9d9521ed8b7e50992cCAS |
[21] J. Gottfriedsen, M. Spoida, S. Blaurock, Z. Anorg. Allg. Chem. 2008, 634, 514.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFCnsL4%3D&md5=97eee506d38e1261b3ab6364ff7d3e1aCAS |
[22] L. Zhang, P. Zhang, L. Zhao, S. Y. Lin, S. F. Xue, J. K. Tang, Z. L. Liu, Eur. J. Inorg. Chem. 2013, 1351.
| Crossref | GoogleScholarGoogle Scholar |
[23] J. Long, F. Habib, P. H. Lin, I. Korobkov, G. Enright, L. Ungur, W. Wernsdorfer, L. F. Chibotaru, M. Murugesu, J. Am. Chem. Soc. 2011, 133, 5319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFKnsrg%3D&md5=450624058ed8ebafdc3caff3e50524e8CAS | 21425794PubMed |
[24] J. Chakraborty, A. Ray, G. Pilet, G. Chastanet, D. Luneau, R. F. Ziessel, L. J. Char-bonnière, L. Carrella, E. Rentschler, M. S. E. Fallah, S. Mitra, Dalton Trans. 2009, 10263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVamsbzN&md5=598fd06546c7d971c64ee396b6482c04CAS | 19921062PubMed |
[25] J. K. Tang, I. Hewitt, N. T. Madhu, G. Chastanet, W. Wernsdorfer, C. E. Anson, C. Benelli, R. Sessoli, A. K. Powell, Angew. Chem. Int. Ed. 2006, 45, 1729.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislSmurc%3D&md5=6d928c559b0d782bb1710bdf0f906647CAS |
[26] J. P. Costes, F. Dahan, F. Nicodeme, Inorg. Chem. 2001, 40, 5285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFymsLc%3D&md5=8ccd15129d739eecb8ef9d296c4db24bCAS | 11559093PubMed |
[27] S. Liao, X. P. Yang, R. A. Jones, Cryst. Growth Des. 2012, 12, 970.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1emsbnE&md5=1ce2af742c37421496db33404ad9712dCAS |
[28] W. Feng, Y. Zhang, X. Lü, Y. Hui, G. Shi, D. Zou, D. Song, J. Fan, W. K. Wong, CrystEngComm 2012, 14, 3456.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFGls74%3D&md5=a34dcaef4770c4f98888dcaf1bf3000fCAS |
[29] W. X. Feng, Y. Zhang, Z. Zhang, X. Q. Lu, H. Liu, G. X. Shi, D. Zou, J. R. Song, D. D. Fan, W. K. Wong, R. A. Jones, Inorg. Chem. 2012, 51, 11377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOhs7fJ&md5=a014ab36431ab4febf347da23d51e399CAS |
[30] X. P. Yang, M. M. Oye, R. A. Jones, S. M. Huang, Chem. Commun. 2013, 49, 9579.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFWksL7E&md5=7b8851fb4c0544b34799b75ea9420eefCAS |
[31] J. C. Boyer, C. J. Carling, B. D. Gates, N. R. Branda, J. Am. Chem. Soc. 2010, 132, 15766.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12lt7zP&md5=20df308fab055bfa406f4a0cb80d7278CAS | 20949969PubMed |
[32] X. P. Yang, R. A. Jones, J. Am. Chem. Soc. 2005, 127, 7686.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvFKgur0%3D&md5=b6f38b06c5359ebf04087581cd0df942CAS |
[33] L. K. Das, A. M. Kirillov, A. Ghosh, CrystEngComm 2014, 16, 3029.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjvVylsLc%3D&md5=b3c38d8dfd90a65fc4f4656b0faa0588CAS |
[34] W. Y. Bi, X. Q. Lü, W. L. Chai, J. R. Song, W. Y. Wong, W. K. Wong, R. A. Jones, J. Mol. Struct. 2008, 891, 450.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOhsbvI&md5=c91258657c773a31379cb65ff4feb780CAS |
[35] M. Fondo, J. Doejo, A. M. García-Deibe, N. Ocampo, J. Sanmartín, Polyhedron 2015, 101, 78.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Ontr%2FE&md5=e46bd7e174a7ee53dbdb325476b8d2eaCAS |
[36] T. Gao, P. F. Yan, G. M. Li, G. F. Hou, J. S. Gao, Polyhedron 2007, 26, 5382.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Giu73K&md5=6a966c330a29f9b90a7f369c8a8d7911CAS |
[37] X. J. Zhu, W. K. Wong, W. Y. Wong, X. P. Yang, Eur. J. Inorg. Chem. 2011, 4651.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyjtLfF&md5=167feb30efb0ce3a97ee23502af71158CAS |
[38] F. Lam, J. X. Xu, K. S. Chan, J. Org. Chem. 1996, 61, 8414.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmslCgurg%3D&md5=d25b65f08c657e3d29595916faf58db3CAS |
[39] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFSnsbg%3D&md5=923b1b7ad4156daca05b429689b63ec1CAS |
[40] G. M. Sheldrick, Acta Crystallogr. Sect. C: Struct. Chem. 2015, C71, 3.
| Crossref | GoogleScholarGoogle Scholar |