Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Experimental and Computational Studies of the Mechanisms of Hydroamination/Cyclisation of Unactivated α,ω-Amino-alkenes with CCC-NHC Pincer Zr Complexes*

Wesley D. Clark A B , Katherine N. Leigh C , Charles Edwin Webster A C D and T. Keith Hollis A B D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA.

B Department of Chemistry and Biochemistry, The University of Mississippi, Oxford, MS 38655, USA.

C Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA.

D Corresponding authors. Email: ewebster@chemistry.msstate.edu; khollis@chemistry.msstate.edu

Australian Journal of Chemistry 69(5) 573-582 https://doi.org/10.1071/CH15779
Submitted: 12 December 2015  Accepted: 7 March 2016   Published: 11 April 2016

Abstract

Four new CCC-NHC pincer Zr complexes have been synthesised, characterised, and used in mechanistic studies in the hydroamination/cyclisation of unactivated amino-alkenes. These Zr pre-catalysts will cyclise a primary amino-alkene, but no reaction was observed for a secondary amino-alkene even in the presence of a primary amine. The empirical rate law, experimentally determined activation parameters, and kinetic isotope effects (KIEs) are reported. Several possible mechanisms, including amido- versus imido-insertion and concerted-insertion versus [2 + 2] cycloaddition mechanisms, were modelled computationally at the PBEPBE level of theory with double-zeta quality basis sets. The formation of a catalytically relevant imido complex via the monoamido complexes was accompanied by in situ formation of ammonium salts of the substrates. The experimental and computational data are consistent with an imido-[2 + 2] cycloaddition mechanism for the CCC-NHC pincer diamido Zr complexes that follow saturation kinetics under catalytically relevant concentrations.


References

[1]  (a) D. O’Hagan, Nat. Prod. Rep. 2000, 17, 435.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvFWrsLw%3D&md5=ec440c3d5062234f541d0fd202ab7f42CAS | 11072891PubMed |
         (b) T. Robinson, in The Biochemistry of Alkaloids (Eds A. Kleinzeller, G. F. Springer, H. G. Wittmann) 1981, pp. 35–57 (Springer-Verlag: New York, NY).
      (c) F. X. Felpin, J. Lebreton, Eur. J. Org. Chem. 2003, 3693.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  T. E. Müller, Chem. Rev. 1998, 98, 675.
         | Crossref | GoogleScholarGoogle Scholar | 11848912PubMed |

[3]  The value of ~42 kcal mol–1 came from calculations completed in this work. See the experimental section and Supplementary Material.

[4]  (a) F. Pohlki, S. Doye, Chem. Soc. Rev. 2003, 32, 104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFajtrk%3D&md5=a4d10d7a23ada358cfd08a078bdac488CAS | 12683107PubMed |
      (b) D. C. Leitch, R. H. Platel, L. L. Schafer, J. Am. Chem. Soc. 2011, 133, 15453.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. L. Gott, A. J. Clarke, G. J. Clarkson, P. Scott, Chem. Commun. 2008, 1422.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. C. Leitch, P. R. Payne, C. R. Dunbar, L. L. Schafer, J. Am. Chem. Soc. 2009, 131, 18246.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R. K. Thomson, J. A. Bexrud, L. L. Schafer, Organometallics 2006, 25, 4069.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) L. E. N. Allan, G. J. Clarkson, D. J. Fox, A. L. Gott, P. Scott, J. Am. Chem. Soc. 2010, 132, 15308.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) V. M. Arredondo, S. Tian, F. E. McDonald, T. J. Marks, J. Am. Chem. Soc. 1999, 121, 3633.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) M. R. Gagne, T. J. Marks, J. Am. Chem. Soc. 1989, 111, 4108.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) D. A. Watson, M. Chiu, R. G. Bergman, Organometallics 2006, 25, 4731.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) L. Ackermann, R. Bergman, Org. Lett. 2002, 4, 1475.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) M. R. Douglass, M. Ogasawara, S. Hong, M. V. Metz, T. J. Marks, Organometallics 2002, 21, 283.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) P. J. Walsh, A. M. Baranger, R. G. Bergman, J. Am. Chem. Soc. 1992, 114, 1708.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) L. Ackermann, Org. Lett. 2005, 7, 439.
         | Crossref | GoogleScholarGoogle Scholar |
      (n) J. Y. Kim, T. Livinghouse, Org. Lett. 2005, 7, 1737.
         | Crossref | GoogleScholarGoogle Scholar |
      (o) P. L. McGrane, M. Jensen, T. Livinghouse, J. Am. Chem. Soc. 1992, 114, 5459.
         | Crossref | GoogleScholarGoogle Scholar |
      (p) P. L. McGrane, T. Livinghouse, J. Am. Chem. Soc. 1993, 115, 11485.
         | Crossref | GoogleScholarGoogle Scholar |
      (q) P. D. Knight, I. Munslow, P. N. O’Shaughnessy, P. Scott, Chem. Commun. 2004, 894.
         | Crossref | GoogleScholarGoogle Scholar |
      (r) D. V. Gribkov, K. C. Hultzsch, F. Hampel, Chem. – Eur. J. 2003, 9, 4796.
         | Crossref | GoogleScholarGoogle Scholar |
      (s) A. L. Reznichenko, T. J. Emge, S. Audörsch, E. G. Klauber, K. C. Hultzsch, B. Schmidt, Organometallics 2011, 30, 921.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) B. D. Stubbert, T. J. Marks, J. Am. Chem. Soc. 2007, 129, 6149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Oqsbs%3D&md5=a18ec6cafe178cbd529e54b0337f154eCAS | 17441716PubMed |
      (b) J. A. Bexrud, J. D. Beard, D. C. Leitch, L. L. Schafer, Org. Lett. 2005, 7, 1959.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Manna, S. Xu, A. D. Sadow, Angew. Chem. Int. Ed. 2011, 50, 1865.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) K. Manna, W. C. Everett, G. Schoendorff, A. Ellern, T. L. Windus, A. D. Sadow, J. Am. Chem. Soc. 2013, 135, 7235.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. R. Smith, H. M. Lovick, T. Livinghouse, Tetrahedron Lett. 2012, 53, 6358.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) S. Tobisch, Dalton Trans. 2012, 41, 9182.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFKku7s%3D&md5=a8dfc253dc0f885c091e4149150dd162CAS | 22714867PubMed |
      (b) S. Tobisch, Chem. – Eur. J. 2012, 18, 7248.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Tobisch, Inorg. Chem. 2012, 51, 3786.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  H. U. Valle, G. Akurathi, J. Cho, W. D. Clark, A. Chakraborty, T. K. Hollis, Aust. J. Chem. 2016,
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) W. D. Clark, J. Cho, H. U. Valle, T. K. Hollis, E. J. Valente, J. Organomet. Chem. 2014, 751, 534.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOlsr7J&md5=df65fa4c5381d92d7cf4409944159102CAS |
      (b) J. Cho, T. K. Hollis, E. J. Valente, J. M. Trate, J. Organomet. Chem. 2011, 696, 373.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Cho, T. K. Hollis, T. R. Helgert, E. J. Valente, Chem. Commun. 2008, 5001.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  H. Kitahara, H. Sakurai, Chem. Lett. 2010, 39, 46.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntF2itw%3D%3D&md5=fcc7a51e498e90d97163f2ff461642d8CAS |

[10]  R. D. Rogers, R. V. Bynum, J. L. Atwood, J. Am. Chem. Soc. 1978, 100, 5238.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlt1Wgt74%3D&md5=30ff47aeb97c214e6c17a22a487b7957CAS |

[11]  (a) I. Prochnow, P. Zark, T. Müller, S. Doye, Angew. Chem. Int. Ed. 2011, 50, 6401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFahsbk%3D&md5=cd87bdd93cf83bcdccfba5e305745031CAS |
      (b) A. L. Reznichenko, F. Hampel, K. C. Hultzsch, Chem. – Eur. J. 2009, 15, 12819.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Mukherjee, T. K. Sen, P. K. Ghorai, P. P. Samuel, C. Schulzke, S. K. Mandal, Chem. – Eur. J. 2012, 18, 10530.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  See p. D-159 in: R. C. Weast, CRC Handbook of Chemistry and Physics (67th edn) 1986 (CRC Press, Inc.: Boca Raton, FL).

[13]  (a) G. Navon, R. Panigel, D. Meyerstein, Inorg. Chim. Acta 1972, 6, 299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XksFaktb4%3D&md5=663c1fc6dc34bb95358d13d4721a9581CAS |
      (b) J. Wilinski, R. J. Kurland, Inorg. Chem. 1973, 12, 2202.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  F. G. Bordwell, Acc. Chem. Res. 1988, 21, 456.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmt12ktrY%3D&md5=79d4a8f1faf31a35e10bb9618baf14c7CAS |

[15]  R. Schwesinger, H. Schlemper, C. Hasenfratz, J. Willaredt, T. Dambacher, T. Breuer, C. Ottaway, M. Fletschinger, J. Boele, H. Fritz, D. Putzas, H. W. Rotter, F. G. Bordwell, A. V. Satish, G. Z. Ji, E. M. Peters, K. Peters, H. G. Von Schnering, L. Walz, Liebigs Ann. 1996, 1055.
         | 1:CAS:528:DyaK28XktlOksrc%3D&md5=3af641c72b08e37e2995b43b6def8dccCAS |

[16]  W. D. Clark, G. E. Tyson, T. K. Hollis, H. U. Valle, E. J. Valente, A. G. Oliver, M. P. Dukes, Dalton Trans. 2013, 42, 7338.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVCgtbo%3D&md5=a7db85c2811fdfefea913832b02df7d0CAS | 23389555PubMed |

[17]  R. J. Rubio, G. T. S. Andavan, E. B. Bauer, T. K. Hollis, J. Cho, F. S. Tham, B. Donnadieu, J. Organomet. Chem. 2005, 690, 5353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOrsbzL&md5=b4634f7b6ef8f621f117e8963d2cfc69CAS |

[18]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 Revision A.02 2009 (Gaussian, Inc.: Wallingford, CT).

[19]  (a) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVCgsbs%3D&md5=80e9e7f93c4d868c24426c2d2790225cCAS | 10062328PubMed |
      (b) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules 1989 (Oxford University Press: Oxford).

[21]  P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtlyju70%3D&md5=d4449add6b2f987262397b9a61060472CAS |

[22]  M. Couty, M. B. Hall, J. Comput. Chem. 1996, 17, 1359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1Kgtb0%3D&md5=affe62e89ba7918a8016e3c4dcaadd25CAS | 25400155PubMed |

[23]  C. E. Check, T. O. Faust, J. M. Bailey, B. J. Wright, T. M. Gilbert, L. S. Sunderlin, J. Phys. Chem. A 2001, 105, 8111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1Oru7w%3D&md5=b3ddaf7e0565d01722a2cbbf4aa7bb96CAS |

[24]  P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXhtFGnsL4%3D&md5=8026f2ab8e910e55882e72eebee336c7CAS |

[25]  R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXpvFyitA%3D%3D&md5=93091f1b4b2e0448c2ae1f3b020a15c8CAS |

[26]  W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XptVemsw%3D%3D&md5=ab74da48b66b171cb32e66c9aea33311CAS |

[27]  A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksV2is74%3D&md5=f1f2fd777bfa6031de0c9df9721acc7bCAS | 19366259PubMed |