Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

CCC-NHC Pincer Zr Diamido Complexes: Synthesis, Characterisation, and Catalytic Activity in Hydroamination/Cyclisation of Unactivated Amino-Alkenes, -Alkynes, and Allenes*

Henry U. Valle A C , Gopalakrishna Akurathi A C , Joon Cho B , Wesley D. Clark A , Amarraj Chakraborty A and T. Keith Hollis A B D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA.

B Department of Chemistry and Biochemistry, The University of Mississippi, Mississippi State, MS 38677, USA.

C These authors contributed equally to this manuscript.

D Corresponding author. Email: khollis@chemistry.msstate.edu

Australian Journal of Chemistry 69(5) 565-572 https://doi.org/10.1071/CH15795
Submitted: 18 December 2015  Accepted: 21 March 2016   Published: 14 April 2016

Abstract

2-(1,3-Bis-3′-butylimidazol-1′-yl-2′-ylidene)phenylene)bis(dimethylamido) iodo zirconium(iv) (3) and 2-(1,3-bis-3′-butylimidazol-1′-yl-2′-ylidene)phenylene)bis (dimethylamido) bromo zirconium(iv) (4), have been prepared via a modification of the solvent and stoichiometry from the previously reported methodology. The reactivity of 3 and 4 in hydroamination/cyclisation is reported. Both diamido complexes have been found to improve catalytic activity as compared with the previously reported mono-amido analogues. Complexes 3 and 4 were observed to be selective for primary amines over secondary amines in hydroamination/cyclisation. The lack of reactivity with secondary amines is consistent with a mechanism involving requisite formation of a Zr-imido intermediate.


References

[1]  (a) S. Hong, S. Tian, M. V. Metz, T. J. Marks, J. Am. Chem. Soc. 2003, 125, 14768.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVSiu7s%3D&md5=bdf0948412135b6cf810e79b9e37a493CAS | 14640652PubMed |
      (b) T. E. Müller, K. C. Hultzsch, M. Yus, F. Foubelo, M. Tada, Chem. Rev. 2008, 108, 3795.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. A. Bexrud, J. D. Beard, D. C. Leitch, L. L. Schafer, Org. Lett. 2005, 7, 1959.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) D. A. Watson, M. Chiu, R. G. Bergman, Organometallics 2006, 25, 4731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot12gur8%3D&md5=dfacf2d32775982c2a55f7ba4c819da8CAS | 19079735PubMed |
         (b) S. R. Chemler, in Catalytic Methods in Asymmetric Synthesis: Advanced Materials, Techniques, and Applications (Eds M. Gruttadauria, F. Giacalone) 2011, pp. 671–688 (John Wiley & Sons, Inc.: Hoboken, NJ).
      (c) A. L. Reznichenko, K. C. Hultzsch, Organometallics 2013, 32, 1394.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. C. H. Yim, J. A. Bexrud, R. O. Ayinla, D. C. Leitch, L. L. Schafer, J. Org. Chem. 2014, 79, 2015.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) E. Chong, S. Qayyum, L. L. Schafer, R. Kempe, Organometallics 2013, 32, 1858.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) H. Zhai, A. Borzenko, Y. Y. Lau, S. H. Ahn, L. L. Schafer, Angew. Chem. Int. Ed. 2012, 51, 12219.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) R. K. Thomson, J. A. Bexrud, L. L. Schafer, Organometallics 2006, 25, 4069.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntVKgtrc%3D&md5=eb2a4b4fafd7cfe5b039af305b212142CAS |
      (b) K. Riener, S. Haslinger, A. Raba, M. P. Högerl, M. Cokoja, W. A. Herrmann, F. E. Kühn, Chem. Rev. 2014, 114, 5215.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) E. S. Sherman, P. H. Fuller, D. Kasi, S. R. Chemler, J. Org. Chem. 2007, 72, 3896.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFegsLc%3D&md5=91c603df84d55f2bc85ee1766e675680CAS | 17428100PubMed |
      (b) G. Zeni, R. C. Larock, Chem. Rev. 2004, 104, 2285.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Hong, T. J. Marks, Acc. Chem. Res. 2004, 37, 673.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) R. C. Larock, H. Yang, S. M. Weinreb, R. J. Herr, J. Org. Chem. 1994, 59, 4172.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  J. Hannedouche, E. Schulz, Chem. – Eur. J. 2013, 19, 4972.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlarsbk%3D&md5=c17c7a3d6184f66017c4b5a1538de4d1CAS | 23450637PubMed |

[6]  F. Pohlki, S. Doye, Chem. Soc. Rev. 2003, 32, 104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFajtrk%3D&md5=a4d10d7a23ada358cfd08a078bdac488CAS | 12683107PubMed |

[7]  (a) M. A. Antunes, R. F. Munhá, L. G. Alves, L. L. Schafer, A. M. Martins, J. Organomet. Chem. 2011, 696, 2.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFegs7jP&md5=8238b6e1c1f27b87718174a845405f73CAS |
      (b) D. C. Leitch, P. R. Payne, C. R. Dunbar, L. L. Schafer, J. Am. Chem. Soc. 2009, 131, 18246.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. C. Leitch, R. H. Platel, L. L. Schafer, J. Am. Chem. Soc. 2011, 133, 15453.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) M. R. Gagne, T. J. Marks, J. Am. Chem. Soc. 1989, 111, 4108.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksFOmsrw%3D&md5=db7207210174be0d891dcf58a3ef1b57CAS |
      (b) M. R. Gagne, C. L. Stern, T. J. Marks, J. Am. Chem. Soc. 1992, 114, 275.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. M. Arredondo, S. Tian, F. E. McDonald, T. J. Marks, J. Am. Chem. Soc. 1999, 121, 3633.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. F. Yuen, T. J. Marks, Organometallics 2009, 28, 2423.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) J. R. Petersen, J. M. Hoover, W. S. Kassel, A. L. Rheingold, A. R. Johnson, Inorg. Chim. Acta 2005, 358, 687.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOmtw%3D%3D&md5=b8281698e4a7c5ae265cf1ab2927e714CAS |
      (b) J. M. Hoover, J. R. Petersen, J. H. Pikul, A. R. Johnson, Organometallics 2004, 23, 4614.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) M. J. Lopez-Gomez, D. Martin, G. Bertrand, Chem. Commun. 2013, 49, 4483.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtlersLk%3D&md5=9086eec7b9561b64a5141c70ef5ef816CAS |
      (b) R. Kinjo, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2011, 50, 5560.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. R. Chemler, Org. Biomol. Chem. 2009, 7, 3009.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. E. Müller, K. C. Hultzsch, M. Yus, F. Foubelo, M. Tada, Chem. Rev. 2008, 108, 3795.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) H. Kim, T. Livinghouse, D. Seomoon, H. L. Phil, Bull. Korean Chem. Soc. 2007, 28, 1127.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) H. Kim, T. Livinghouse, J. H. Shim, S. G. Lee, P. H. Lee, Adv. Synth. Catal. 2006, 348, 701.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) K. C. Hultzsch, F. Hampel, T. Wagner, Organometallics 2004, 23, 2601.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) I. Bytschkov, S. Doye, Eur. J. Org. Chem. 2003, 935.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) P. D. Knight, I. Munslow, P. N. O’Shaughnessy, P. Scott, Chem. Commun. 2004, 894.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) A. L. Gott, A. J. Clarke, G. J. Clarkson, P. Scott, Organometallics 2007, 26, 1729.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) A. L. Gott, A. J. Clarke, G. J. Clarkson, P. Scott, Chem. Commun. 2008, 1422.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) K. Manna, N. Eedugurala, A. D. Sadow, J. Am. Chem. Soc. 2015, 137, 425.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) K. Manna, W. C. Everett, G. Schoendorff, A. Ellern, T. L. Windus, A. D. Sadow, J. Am. Chem. Soc. 2013, 135, 7235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvVyhtLw%3D&md5=e1ddc10889ced7f3e0f724f2f2fb08eaCAS | 23631736PubMed |
      (b) L. Luconi, A. Rossin, A. Motta, G. Tuci, G. Giambastiani, Chem. – Eur. J. 2013, 19, 4906.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. D. Clark, J. Cho, H. U. Valle, T. K. Hollis, E. J. Valente, J. Organomet. Chem. 2014, 751, 534.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. Kim, P. H. Lee, T. Livinghouse, Chem. Commun. 2005, 5205.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  S. M. Coman, V. I. Parvulescu, Org. Process Res. Dev. 2015, 19, 1327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmslWjsbw%3D&md5=764003567f1026b8b230276fe1e925b6CAS |

[13]  D. J. Morales-Morales, C. Jensen, The Chemistry of Pincer Complexes 2007 (Elsevier Science: Amsterdam).

[14]  J. A. Love, M. S. Sanford, M. W. Day, R. H. Grubbs, J. Am. Chem. Soc. 2003, 125, 10103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1Siu7k%3D&md5=b738db426cee842892564511ea8023a3CAS | 12914474PubMed |

[15]  (a) A. Kascatan-Nebioglu, M. J. Panzner, C. A. Tessier, C. L. Cannon, W. J. Youngs, Coord. Chem. Rev. 2007, 251, 884.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFOjsL8%3D&md5=138ffb375436abc88039f2ae31e57c85CAS |
      (b) X. Zhang, A. M. Wright, N. J. DeYonker, T. K. Hollis, N. I. Hammer, C. E. Webster, E. J. Valente, Organometallics 2012, 31, 1664.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. J. Park, K. H. Kim, S. Y. Choi, H. M. Kim, W. I. Lee, Y. K. Kang, Y. K. Chung, Inorg. Chem. 2010, 49, 7340.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  P. Cao, J. Cabrera, R. Padilla, D. Serra, F. Rominger, M. Limbach, Organometallics 2012, 31, 921.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFeiuw%3D%3D&md5=58c664f62f40aef8aacc72b77afe4545CAS |

[17]  J. Cho, T. K. Hollis, T. R. Helgert, E. J. Valente, Chem. Commun. 2008, 5001.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyqsb7L&md5=9ebc0911685229ded032f2b8041b271dCAS |

[18]  (a) R. J. Rubio, G. T. S. Andavan, E. B. Bauer, T. K. Hollis, J. Cho, F. S. Tham, B Donnadieu, J. Organomet. Chem. 2005, 690, 5353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOrsbzL&md5=b4634f7b6ef8f621f117e8963d2cfc69CAS |
      (b) J. Cho, T. K. Hollis, E. J. Valente, J. M. Trate, J. Organomet. Chem. 2011, 696, 373.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) T. K. Hollis, J. K. Burdett, B. Bosnich, Organometallics 1993, 12, 3385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXls1Sgtr0%3D&md5=c432f55533ca0ec53c28417e3f0e9698CAS |
         (b) L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry 1960 (Cornell University Press: Ithaca, NY).

[20]  (a) T. E. Müller, Chem. Rev. 1998, 98, 675.
         | Crossref | GoogleScholarGoogle Scholar | 11848912PubMed |
      (b) M. Kawatsura, J. F. Hartwig, J. Am. Chem. Soc. 2000, 122, 9546.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  S. Budavari, M. J. O’Neil, A. Smith, P. E. Heckelman, The Merck Index: An Encylopedia of Chemicals, Drugs, and Biologicals (11th edn) 1989 (Merck Co.: Rahway, NJ).

[22]  A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVerur0%3D&md5=9095a768060c381b15c30ac1b9e8d22bCAS |

[23]  W. D. Clark, G. E. Tyson, T. K. Hollis, H. U. Valle, E. J. Valente, A. G. Oliver, M. P. Dukes, Dalton Trans. 2013, 42, 7338.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVCgtbo%3D&md5=a7db85c2811fdfefea913832b02df7d0CAS | 23389555PubMed |