Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Synthesis of Non-Symmetrical and Atropisomeric Dibenzo[1,3]diazepines: Pd/CPhos-Catalysed Direct Arylation of Bis-Aryl Aminals*

Tim Wezeman A , Yuling Hu A , John McMurtrie C , Stefan Bräse A B and Kye-Simeon Masters C D
+ Author Affiliations
- Author Affiliations

A Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.

B Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany.

C Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia.

D Corresponding author. Email: kye.masters@qut.edu.au

Australian Journal of Chemistry 68(12) 1859-1865 https://doi.org/10.1071/CH15465
Submitted: 1 August 2015  Accepted: 5 October 2015   Published: 16 November 2015

Abstract

Pd/CPhos-catalysis provides direct arylation/cyclisation of methylene-linked bis-anilines to dibenzo[1,3]diazepines v, which are both non-(C2)-symmetrical and axially chiral. Synthesis of the direct arylation substrates commences with substitution of (N-acyl)anilines to methylene methyl sulfide derivatives, followed by halogenation/de-thiomethylation to N-(chloromethyl)anilines. These are substituted with a second aniline derivative, allowing modular preparation of (ortho-halo)aryl-aminal-linked arenes 4. The C–H functionalising direct arylation conditions were adapted from Fagnou and co-workers: substrates and potassium carbonate were heated in dimethylacetamide in the presence of palladium acetate and an electron-rich and sterically hindered biarylphosphine ligand, here CPhos 5. These conditions delivered the C1-(a)symmetric dibenzo[1,3]diazepine targets, which, due to torsion around the axis of the newly formed biaryl bond, are also intrinsically atropisomeric. The axially twisted scaffold is known to impart special properties to ligands/catalysts when the products are further converted into the corresponding seven-membered ring-containing N-heterocyclic carbenes (e.g. xii and xiv).


References

[1]  W. Ried, A. Sinharay, Chem. Ber. 1964, 97, 1214.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXktFWgtL0%3D&md5=19f99e61617c636b5fc9618385814f15CAS |

[2]  N. Kaur, D. Kishore, Synth. Commun. 2014, 44, 1375.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlSnsbjP&md5=ae822dd544b10d6562cd8deb54bac342CAS |

[3]  W. E. Kreighbaum, H. C. Scarborough, J. Med. Chem. 1964, 7, 310.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXktVChsb8%3D&md5=5d9c8b0b8a2c7e553998f702d61e5f1dCAS | 14204966PubMed |

[4]  (a) H. W. Wanzlick, Angew. Chem. Int. Ed. Engl. 1962, 1, 75.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. A. Herrmann, M. Elison, J. Fischer, C. Köcher, G. R. J. Artus, Angew. Chem. Int. Ed. Engl. 1995, 34, 2371.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Iglesias, D. J. Beetstra, J. C. Knight, L.-L. Ooi, A. Stasch, S. Coles, L. Male, M. B. Hursthouse, K. J. Cavell, A. Dervisi, I. A. Fallis, Organometallics 2008, 27, 3279.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) B. K. Keitz, K. Endo, P. R. Patel, M. B. Herbert, R. H. Grubbs, J. Am. Chem. Soc. 2012, 134, 693.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) S. J. Ryan, L. Candish, D. W. Lupton, Chem. Soc. Rev. 2013, 42, 4906.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) L. He, H. Guo, Y. Wang, G.-F. Du, B. Dai, Tetrahedron Lett. 2015, 56, 972.
         | Crossref | GoogleScholarGoogle Scholar |
         (i) F. Glorius, S. Bellemin-Laponnaz, N-Heterocyclic Carbenes in Transition Metal Catalysis 2007 (Springer-Verlag: Berlin).

[5]  (a) C. C. Scarborough, B. V. Popp, I. A. Guzei, S. S. Stahl, J. Organomet. Chem. 2005, 690, 6143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Cmtb3L&md5=b731a9e96755c959366c5bba014c9065CAS |
         (b) S. S. Stahl, C. C. Scarborough, U.S. Patent US20060229448A1 2006.
      (c) C. C. Scarborough, I. A. Guzei, S. S. Stahl, Dalton Trans. 2009, 2284.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. C. Scarborough, A. Bergant, G. T. Sazama, I. A. Guzei, L. C. Spencer, S. S. Stahl, Tetrahedron 2009, 65, 5084.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. M. Rogers, J. E. Wendlandt, I. A. Guzei, S. S. Stahl, Org. Lett. 2006, 8, 2257.
         | Crossref | GoogleScholarGoogle Scholar |
         (f) W. Ried, J. Braeutigam, Chem. Ber. 1966, 99, 3304 (and references therein).
      (g) Enantioselective catalysis is also performed with 5NHC derivatives; for an example, see: L. Candish, C. M. Forsyth, D. W. Lupton, Angew. Chem. Int. Ed. 2013, 52, 9149.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  Y. Yuan, L. Bai, J. Nan, J. Liu, X. Luan, Org. Lett. 2014, 16, 4316.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht12gu7jO&md5=56935ca944d9327771797fd61fb38196CAS | 25102092PubMed |

[7]  R. Mirabdolbaghi, M. Hassan, T. Dudding, Tetrahedron Asymmetry 2015, 26, 560.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnsFymtr4%3D&md5=05c1973499e520e7c6cd5da2add07984CAS |

[8]  (a) S. Kumar, R. Pratap, A. Kumar, B. Kumar, V. Tandon, V. Ram, Tetrahedron 2013, 69, 4857.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvV2gtLk%3D&md5=abaf94fa8a73a2202e986635a25a82bbCAS |
      (b) R. J. W. Le Fevre, J. Chem. Soc. 1929, 733.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  K. Matsuda, I. Yanagisawa, Y. Isomura, T. Mase, T. Shibanuma, Synth. Commun. 1997, 27, 2393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlOltL0%3D&md5=18cc315b63aced781a956424191faa5cCAS |

[10]  (a) W. Ried, W. Storbeck, Chem. Ber. 1962, 95, 459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XntlGjug%3D%3D&md5=88f376ebaf8d04610fb2ede0f2a4eceeCAS |
      (b) W. Ried, A. Sinharay, Chem. Ber. 1965, 98, 3523.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Alajarín, P. Molina, P. Sánchez-Andrada, M. Concepción Foces-Foces, J. Org. Chem. 1999, 64, 1121.
         | Crossref | GoogleScholarGoogle Scholar |

[11]     (a) Y. Du, S. Shang, K. Zhao, China Patent CN103601689A 2014.
      (b) A. I. Roshchin, R. G. Kostyanovsky, Mendeleev Commun. 2003, 13, 275.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. R. Ibrahim, Z. A. Fataftah, O. A. Hamed, J. Chem. Eng. Data 1988, 33, 69.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Kumar, R. Pratap, A. Kumar, B. Kumar, V. K. Tandon, V. J. Ram, Beilstein J. Org. Chem. 2013, 9, 809.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) A. Albini, E. Fasani, V. Frattini, J. Chem. Soc. Perkin Trans. 2 1988, 235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlt1yitLs%3D&md5=8fb53ef4bd03bf96e7c688b5c86653e3CAS |
      (b) S. Shang, D. Zhang-Negrerie, Y. Du, K. Zhao, Angew. Chem. Int. Ed. 2014, 53, 6216.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) M. Hori, T. Kataoka, H. Shimizu, K. Matsuo, Tetrahedron Lett. 1979, 20, 3969.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H. Shimizu, K. Hamada, M. Ozawa, T. Kataoka, M. Hori, K. Kobayashi, Y. Tada, Tetrahedron Lett. 1991, 32, 4359.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Shimizu, T. Hatano, T. Matsuda, T. Iwamura, Tetrahedron Lett. 1999, 40, 95.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  J. H. Ryan, C. Hyland, J. Just, A. G. Meyer, J. A. Smith, C. C. Williams, Prog. Heterocycl. Chem. 2013, 25, 455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptVymug%3D%3D&md5=9d7aa9a97c86f668eb9f2b707a8779ceCAS |

[15]  (a) (N,S): D. Enders, O. Niemeier, A. Henseler, Chem. Rev. 2007, 107, 5606.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1SgtbjJ&md5=ba77abc5e859c1d0447191ff3ed5b2d5CAS | 17956132PubMed |
      (b) S. W. Chien, S. K. Yen, T. S. A. Hor, Aust. J. Chem. 2010, 63, 727.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) (N,O): M. Iglesias, M. Albrecht, Dalton Trans. 2010, 39, 5213.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. Krüger, M. Albrecht, Aust. J. Chem. 2011, 64, 1113.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  B. Panunzi, A. Tuzi, M. Tingoli, Inorg. Chem. Commun. 2010, 13, 153.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SksbfI&md5=f29208ef976e013cdf3d78a8bc34b5d2CAS |

[17]  (a) A. Studer, D. P. Curran, Nat. Chem. 2014, 6, 765.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVSitrrL&md5=e8f9045049dab93b21a3bffb851a4beaCAS | 25143210PubMed |
      (b) K.-S. Masters, A. Bihlmeier, W. Klopper, S. Bräse, Chem. – Eur. J. 2013, 19, 17827.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K.-S. Masters, S. Bräse, Angew. Chem. Int. Ed. 2013, 52, 866.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  (a) A. K. Ganguly, C. H. Wang, J. Misiaszek, T. M. Chan, B. N. Pramanik, A. T. McPhail, Tetrahedron Lett. 2004, 45, 8909.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1Srsbw%3D&md5=0c2765273f67009908ab1168d024f7baCAS |
      (b) A. K. Ganguly, C. H. Wang, D. Biswas, J. Misiaszek, A. Micula, Tetrahedron Lett. 2006, 47, 5539.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) F. Shibahara, T. Murai, Asian J. Org. Chem. 2013, 2, 624.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ymtLbK&md5=5ca4156c14fa8c41df7825adec2a1c5eCAS |
      (b) L.-C. Campeau, M. Parisien, M. Leblanc, K. Fagnou, J. Am. Chem. Soc. 2004, 126, 9186.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L.-C. Campeau, M. Parisien, A. Jean, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 581.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Lafrance, D. Lapointe, K. Fagnou, Tetrahedron 2008, 64, 6015.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) M. Lafrance, N. Blaquiere, K. Fagnou, Eur. J. Org. Chem. 2007, 811.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. Livendahl, A. M. Echavarren, Isr. J. Chem. 2010, 50, 630.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) M. Leblanc, K. Fagnou, Org. Lett. 2005, 7, 2849.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  J. Barluenga, A. M. Bayón, P. J. Campos, G. Canal, G. Asensio, E. González-Nuñez, Y. Molina, Chem. Ber. 1988, 121, 1813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlSns74%3D&md5=124c504dad904cc8441fec1be60fcbb6CAS |

[21]  A. G. Giumanini, G. Verardo, E. Zangrando, L. Lassiani, J. Prakt. Chem. 1987, 329, 1087.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtFCku7c%3D&md5=fe1dc0968e781556fb43abbf518d9055CAS |

[22]  (a) A. Kimishima, H. Umihara, A. Mizoguchi, S. Yokoshima, T. Fukuyama, Org. Lett. 2014, 16, 6244.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFOhtrvI&md5=242ad86685b93a1aae27aef704dfdca1CAS | 25423610PubMed |
      (b) G. Bringmann, A. J. Price Mortimer, P. A. Keller, M. J. Gresser, J. Garner, M. Breuning, Angew. Chem. Int. Ed. 2005, 44, 5384.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  M. C. Kozlowski, B. J. Morgan, E. C. Linton, Chem. Soc. Rev. 2009, 38, 3193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12ht7rM&md5=3b5b550fe971d915b712aab19a530cd0CAS | 19847351PubMed |

[24]  D. W. Old, J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1998, 120, 9722.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslOhsr8%3D&md5=d4d3b8e26986cd3b9912f69f7d6eb7b5CAS |

[25]  C. Han, S. L. Buchwald, J. Am. Chem. Soc. 2009, 131, 7532.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFWntro%3D&md5=88d15705d5bdcfff005bb1f5f9fa0bbcCAS | 19441851PubMed |

[26]  F. Seng, Synthesis 1977, 753.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXltVyisw%3D%3D&md5=58cc3387106326f23522cbef76ddf228CAS |

[27]  N. P. Cowieson, D. Aragao, M. Clift, D. J. Ericsson, C. Gee, S. J. Harrop, N. Mudie, S. Panjikar, J. R. Price, A. Riboldi-Tunnicliffe, R. Williamson, T. Caradoc-Davies, J. Synchrotron Radiat. 2015, 22, 187.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFeitLrO&md5=3ac0195d4409375b191cc1c20ca3c447CAS | 25537608PubMed |

[28]  T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=d988a16f452ce8c356becc4eed4a269bCAS | 12409628PubMed |

[29]  W. Kabsch, J. Appl. Cryst. 1993, 26, 795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXptFeltw%3D%3D&md5=7229cac425d9e58dec204a3d9d7e100eCAS |

[30]  L. J. Farrugia, J. Appl. Cryst. 2012, 45, 849.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKltbzK&md5=4625413b7da992a4321894963970df8fCAS |

[31]  A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Cryst. 1999, 32, 115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFOrsbo%3D&md5=186de5052d4b4d858e69207f48c3cd04CAS |

[32]  G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Adv. 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=59f548f8f29686b585f885edea91b42eCAS |