Steric and Electronic Effects in the Synthesis and Regioselective Hydrolysis of Unsymmetrical Imides
Jing Shang A , Aysa Pourvali A , James R. Cochrane A and Craig A. Hutton A BA School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Vic. 3010, Australia.
B Corresponding author. Email: chutton@unimelb.edu.au
Australian Journal of Chemistry 68(12) 1854-1858 https://doi.org/10.1071/CH15504
Submitted: 17 August 2015 Accepted: 19 September 2015 Published: 15 October 2015
Abstract
The AgI-promoted coupling reaction of thioamides and carboxylic acids is shown to be a useful method for the generation of unsymmetrical imides. The reaction proceeds efficiently with unhindered and electron-rich or neutral coupling partners, but not with hindered thioamides (such as thiopivalamides) or electron deficient thioamides (such as trifluorothioacetamides). Intriguingly, thioformamides are also ineffective coupling partners, despite having minimal steric or electronic influence. Hindered carboxylic acid coupling partners (such as pivalic acid) are tolerated, but electron deficient acids, such as trifluoroacetic acid, are ineffective coupling partners. Furthermore, an interplay of both steric and electronic effects is observed in the subsequent hydrolysis of unsymmetrical imides. Imides with a dimethoxybenzoyl group give high regioselectivity upon hydrolysis, favouring cleavage of the distal acyl group. Imides with a p-nitrobenzoyl or pivaloyl group give reversed selectivity, favouring cleavage of the proximal acyl group.
References
[1] F. A. Luzzio, in Science of Synthesis: Houben-Weyl Methods of Molecular Transformations (Ed. S. M. Weinreb) 2005, Vol. 21, 259–324 (Georg Thieme Verlag KG: Stuttgart).[2] A. Pourvali, J. R. Cochrane, C. A. Hutton, Chem. Commun. 2014, 50, 15963.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVCrsrnL&md5=7bd9517115d753cde62e0ef5b74afd79CAS |
[3] R. W. Darbeau, E. H. White, N. Nunez, B. Coit, M. Daigle, J. Org. Chem. 2000, 65, 1115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt12ltw%3D%3D&md5=51cd46244fbe1f2b4340b4b0bba20735CAS | 10814062PubMed |
[4] X. Li, S. J. Danishefsky, J. Am. Chem. Soc. 2008, 130, 5446.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvFejtLk%3D&md5=5ba76c34f3db6e367ea5adf723b4b0a1CAS | 18370392PubMed |
[5] Y. Yuan, J. Zhu, X. Li, X. Wu, S. J. Danishefsky, Tetrahedron Lett. 2009, 50, 2329.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkt1Snsrw%3D&md5=e34e43a08f001aea609e76f3c714c14aCAS | 20161291PubMed |
[6] M. Avalos, R. Babiano, C. J. Duran, J. Jiminez, J. C. Palacios, Tetrahedron Lett. 1994, 35, 477.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisVels7c%3D&md5=e02dda4df2268ab74fbbdeb9bb4c5ba0CAS |
[7] M. Avalos, R. Babiano, P. Cintas, C. J. Durán, F. J. Higes, J. L. Jimenez, I. Lopez, J. C. Palacios, Tetrahedron 1997, 53, 14463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntVOnt7Y%3D&md5=e9dba4a6c6ae47202897cd00d78d1edeCAS |
[8] Y. M. Boyarchuk, Polym. Sci. U.S.S.R. 1969, 11, 2460.
| Crossref | GoogleScholarGoogle Scholar |
[9] A. J. Bennet, Q. P. Wang, H. Slebocka-Tilk, V. Somayaji, R. S. Brown, B. D. Santarsiero, J. Am. Chem. Soc. 1990, 112, 6383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvFKrs74%3D&md5=d3cc636df42a8b19a4cb2ec80572c65bCAS |
[10] V. Somayaji, R. S. Brown, J. Org. Chem. 1986, 51, 2676.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksVajtr4%3D&md5=09a103a790f524587efe183cd54bdb67CAS |
[11] S. Yamada, T. Sugaki, K. Matsuzaki, J. Org. Chem. 1996, 61, 5932.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks12lsb4%3D&md5=fa7f9722a7dd9c571fb6efdca62e858eCAS |
[12] H. J. Meyer, C. Nolde, I. Thomsen, S.-O. Lawesson, Bull. Soc. Chim. Belg. 1978, 87, 621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXntFOhsA%3D%3D&md5=fdd9d8323a5d5eacb1a61a7c9c93e9afCAS |
[13] R. H. Taaning, K. B. Lindsay, B. Schiøtt, K. Daasbjerg, T. Skrydstrup, J. Am. Chem. Soc. 2009, 131, 10253.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFKnt7c%3D&md5=d8140b141390a6b8949e40ec29e2316aCAS | 19580282PubMed |
[14] T. Mukaiyama, J. Ichikawa, M. Asami, Chem. Lett. 1983, 12, 293.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. Wang, C. Liu, J. Yuan, A. Lei, Chem. Commun. 2014, 50, 4736.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls12ntr0%3D&md5=3a623e9ab21642002ce8d3ba5b5cfb51CAS |
[16] R. W. Darbeau, R. E. Gibble, R. S. Pease, D. E. Bridges, L. M. Siso, D. J. Heurtin, J. Chem. Soc., Perkin Trans. 2 2001, 1084.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVyhtbs%3D&md5=6deeaf4be4d4d51df6dd6ac8d28d61f3CAS |