First Principle Study of Electronic and Non-Linear Optical (NLO) Properties of Triphenylamine Dyes: Interactive Design Computation of New NLO Compounds
Muhammad Ramzan Saeed Ashraf Janjua A B C F , Zain Hassan Yamani D , Saba Jamil E , Asif Mahmood B , Imran Ahmad B , Muhammad Haroon B , Mudassir Hussain Tahir B , Zhihua Yang A and Shilie Pan A FA Xinjiang Technical Institute of Physics and Chemistry of Chinese Academy of Sciences (CAS), Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40–1 South Beijing Road, Urumqi 830011, China.
B Department of Chemistry, University of Sargodha, Sargodha-40100, Pakistan.
C Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
D Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
E Environmental and Material Chemistry Laboratory, Department of Chemistry, University of Agriculture, Faisalabad-38040, Pakistan.
F Corresponding authors. Email: Janjua@uos.edu.pk; slpan@ms.xjb.ac.cn
Australian Journal of Chemistry 69(4) 467-472 https://doi.org/10.1071/CH15402
Submitted: 6 July 2015 Accepted: 14 September 2015 Published: 5 October 2015
Abstract
In this study, density functional theory and time-dependent density functional theory are used to determine how the size of π-conjugated system influences the absorption spectra and non-linear optical (NLO) properties of dyes. Double and triple bonds, as well the benzene rings, are used in conjugated systems. The results of the theoretical computation show that the absorption spectra are gradually broadened and red-shifted with increases in the conjugation length. Theoretical examination of the NLO properties was performed on the key parameters of polarizability and hyperpolarizability. A notable increase in the non-linear optical response was observed with an increase in the conjugation length of the π-spacer.
References
[1] D. J. Williams, Angew. Chem., Int. Ed. Engl. 1984, 23, 690.| Crossref | GoogleScholarGoogle Scholar |
[2] P. N. Prasad, D. J. Williams, Introduction to Nonlinear Optical Effects in Organic Molecules and Polymers 1991 (Wiley: New York, NY).
[3] D. S. Chemla, J. Zyss, (Eds.) Nonlinear Optical Properties of Organic Molecules and Crystals 1987 (Academic Press: New York, NY).
[4] S. P. Karna, Y. Zhang, M. Samoc, P. N. Prasad, B. A. Reinhardt, A. G. Dillard, J. Chem. Phys. 1993, 99, 9984.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitVeksbg%3D&md5=f2e6c11ab3349406c81665450bd3c960CAS |
[5] M. Drozd, M. K. Marchewka, J. Mol. Struct.: THEOCHEM 2005, 716, 175.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvF2ls7w%3D&md5=3db3ca3bfc13d4a318dd4243f8edb93dCAS |
[6] A. Datta, S. Pal, J. Mol. Struct.: THEOCHEM 2005, 715, 59.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslyktbg%3D&md5=744f8253931ad2fc9300791c6d3cc467CAS |
[7] A. J. Garza, O. I. Osman, N. A. Wazzan, S. B. Khan, A. M. Asiri, G. E. Scuseria, Theor. Chem. Acc. 2014, 133, 1458.
| Crossref | GoogleScholarGoogle Scholar |
[8] S. A. Siddiqui, T. Rasheed, M. Faisal, A. K. Pandey, S. B. Khan, Spectrosc. Int. J. 2012, 27, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCktbjL&md5=e9f91ae3cd43c6f95b677006355d7c21CAS |
[9] M. R. S. A. Janjua, A. Mahmood, F. Ahmad, Can. J. Chem. 2013, 91, 1303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGmt7rP&md5=ac44fc9a15b8152d3229980b9d1c986dCAS |
[10] Y. Zheng, Z.-H. Pan, F.-Li. Zhao, M. Qin, Y. Zhou, C.-S. Wang, Chin. Phys. B 2014, 23, 024212.
| Crossref | GoogleScholarGoogle Scholar |
[11] M. R. S. A. Janjua, S. Jamil, T. Ahmad, Z. Yang, A. Mahmood, S. Pan, Comput. Theor. Chem. 2014, 1033, 6.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksF2gu70%3D&md5=4010c805319d548db03bd0bdc713598fCAS |
[12] J. Zyss, Molecular Nonlinear Optics: Materials, Physics and Devices 1994 (Academic Press: New York, NY).
[13] L. R. Dalton, in Nonlinear Optical Polymeric Materials: From Chromophore Design to Commercial Applications, Advances in Polymer Science 2001, Vol. 158, p. 1 (Springer-Verlag: Heidelberg).
[14] L. R. Dalton, The Role of Nonlinear Optical Devices in the Optical Communications Age 2001 (Kluwer Academic Publishers: Dordrecht).
[15] G. Berkovic, Y. R. Shen, M. Shadt, Mol. Cryst. Liq. Cryst. 1987, 150, 607.
[16] A. Dulcic, C. Flytzanis, C. L. Tang, D. Pepin, M. Fetizon, Y. Hoppilliard, J. Chem. Phys. 1981, 74, 1559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktVKhsbc%3D&md5=00783ed4d449949eb1dd2221ac274f79CAS |
[17] J. Zyss, I. Ledoux, Chem. Rev. 1994, 94, 77.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXovFCitQ%3D%3D&md5=3efbe4455d28b4b8948c8e4a3b7a72ffCAS |
[18] Z. Yuan, C. D. Entwistle, J. C. Collings, D. A. Jove, A. S. Batsanov, J. A. K. Howard, N. J. Taylor, H. M. Kaiser, D. E. Kaufmann, S. Y. Poon, W. Y. Wong, C. Jardin, S. Fathallah, A. Boucekkine, J. F. Halet, T. B. Marder, Chem. – Eur. J. 2006, 12, 2758.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1SqtL4%3D&md5=21f243d2ae7eb718f47b33c86a6874e3CAS | 16429474PubMed |
[19] C. D. Entwistle, J. C. Collings, A. Steffen, L. O. Palsson, A. Beeby, D. A. Jove, J. M. Burke, A. S. Batsanov, J. A. K. Howard, J. A. Mosely, S. Y. Poon, W. Y. Wong, F. Ibersiene, S. Fathallah, A. Boucekkine, J. F. Halet, T. B. Marder, J. Mater. Chem. 2009, 19, 7532.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1arurbI&md5=5640d0051e7ff98f5e1b39d9a622b157CAS |
[20] L. Shi, M. Horn, S. Kobayashi, H. Mayr, Chem. – Eur. J. 2009, 15, 8533.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGkurnI&md5=1230bd304dadac032f6549141fce1198CAS | 19630020PubMed |
[21] F. Meyers, S. R. Marder, M. Pierce, J. L. Bredas, J. Am. Chem. Soc. 1994, 116, 10703.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXms1Oiu7k%3D&md5=5ee0c82e54ab2702a918d7bd6bb18011CAS |
[22] E. M. Breitung, C. F. Shu, R. J. McMahon, J. Am. Chem. Soc. 2000, 122, 1154.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1Wntw%3D%3D&md5=5e22c6050c7b7e64667df3bee107c513CAS |
[23] P. R. Varanasi, A. K. Y. Jen, J. Chandrasekhar, I. N. N. Namboothiri, A. Rathna, J. Am. Chem. Soc. 1996, 118, 12443.
| Crossref | GoogleScholarGoogle Scholar |
[24] U. D. L. Albert, T. J. Marks, M. A. Ratner, J. Am. Chem. Soc. 1997, 119, 6575.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktlKjsb0%3D&md5=3af2238d0579732bad3635cf8edc65dfCAS |
[25] H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. E. C. H. Brown, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 2007, 129, 3267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFKktbk%3D&md5=c77be512aabf3dbf7508bd56ec48ff16CAS | 17309258PubMed |
[26] H. Kang, A. Facchetti, P. Zhu, H. Jiang, Y. Yang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Z. Stern, S. T. Ho, T. J. Marks, Angew. Chem., Int. Ed. 2005, 44, 7922.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCmtLjO&md5=f7faecbcb3f6b4080951cfefa2fa5b37CAS |
[27] J. S. Yang, K. L. Liau, C. Y. Li, M. Y. Chen, J. Am. Chem. Soc. 2007, 129, 13183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWksbfK&md5=21c8d50977ea1b7a4a2780bc6f4cb71aCAS | 17918840PubMed |
[28] (a) E. A. B. Kantchev, T. B. Norsten, M. B. Sullivan, Org. Biomol. Chem. 2012, 10, 6682.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFChtrbP&md5=267a3aaf4fec124592b161951bae8bf5CAS |
(b) E. A. B. Kantchev, H. S. Tan, T. B. Norsten, M. B. Sullivan, Org. Lett. 2011, 13, 5432.
| Crossref | GoogleScholarGoogle Scholar |
[29] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian09, Revision A.1 2009 (Gaussian Inc: Wallingford, CT).
[30] J. Autschbach, ChemPhysChem 2009, 10, 1757.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Kktrs%3D&md5=ecc9e6f18e3f5c828fbd12566bde5ad7CAS | 19507206PubMed |
[31] A. Dreuw, M. Head-Gordon, Chem. Rev. 2005, 105, 4009.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKmtLrK&md5=43473c8838f5dd94684d06a1ddfb2cc7CAS | 16277369PubMed |
[32] T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFKgtbs%3D&md5=92084a6404e1491b2caea9eeb7fbd9f7CAS |
[33] J. Zhang, H.-B. Li, Y. Wu, Y. Geng, Y.-A. Duan, Y. Liao, Z.-M. Su, Chem. J. Chinese U. 2011, 32, 1343.
| 1:CAS:528:DC%2BC3MXotlKmsL8%3D&md5=8ec789dd83160188ab20fef65f9b7ad0CAS |
[34] V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXht1Cgt7o%3D&md5=b7fdc888acabc29cdf354acf7b84519aCAS |
[35] C. Qin, A. E. Clark, Chem. Phys. Lett. 2007, 438, 26.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1Ogt70%3D&md5=c4c452e94aefc98d4bb88a75e7fcbe31CAS |
[36] B. A. Sriyanka Mendis, K. M. Nalin de Silva, J. Mol. Struct.: THEOCHEM 2004, 678, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1CltLg%3D&md5=c6d47a590c1730b15ac174b18c66cc48CAS |
[37] H. S. Nalwa, Handbook of Advanced Electronic and Photonic Materials and Devices 2001 (Academic Press: San Diego, CA).
[38] D. R. Kanis, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 1992, 114, 10338.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXotFWjsQ%3D%3D&md5=daf44333be4f2083f9efbaba2d650274CAS |
[39] M. R. S. A. Janjua, Z. M. Su, W. Guan, C. G. Liu, L. K. Yan, P. Song, G. Maheen, Aust. J. Chem. 2010, 63, 836.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlGjt7s%3D&md5=c08b4e2552d5736da0e0252086a3216bCAS |
[40] M. R. S. A. Janjua, Inorg. Chem. 2012, 51, 11306.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWksL%2FF&md5=4048200939f650b514d80db482b038b1CAS |
[41] M. R. S. A. Janjua, C. G. Liu, W. Guan, S. Muhammad, L. K. Yan, Z. M. Su, J. Phys. Chem. A 2009, 113, 3576.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtl2qsb0%3D&md5=4f02ed970dd662dbda21e2e85296e3b7CAS |
[42] M. R. S. A. Janjua, M. U. Khan, B. Bashir, M. A. Iqbal, Y. Song, S. A. R. Naqvi, Z. A. Khan, Comput. Theor. Chem. 2012, 994, 34.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFaju77K&md5=3876a057475fe2864d1af0fb11719c48CAS |
[43] M. R. S. A. Janjua, M. Amin, M. Ali, B. Bashir, M. U. Khan, M. A. Iqbal, W. Guan, L. K. Yan, Z. M. Su, Eur. J. Inorg. Chem. 2012, 705.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1WksLzJ&md5=765f292afdd6149b9184626392ffcdc3CAS |
[44] M. R. S. A. Janjua, W. Guan, L. K. Yan, Z. M. Su, M. Ali, I. H. Bukhari, J. Mol. Graph. Model. 2010, 28, 735.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFCiu7k%3D&md5=1de7bde69df035f01d6da9911a2dd400CAS |
[45] M. R. S. A. Janjua, W. Guan, L. K. Yan, Z. M. Su, A. Karim, J. Akbar, Eur. J. Inorg. Chem. 2010, 3466.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1artbs%3D&md5=a13d0858cf91924cb99b265ed17eacf1CAS |
[46] M. R. S. A. Janjua, W. Guan, C. G. Liu, S. Muhammad, L. K. Yan, Z. M. Su, Eur. J. Inorg. Chem. 2009, 5181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVymsbjO&md5=3a6d44502662d38bddcbac76fcd2147aCAS |
[47] M. R. S. A. Janjua, S. Jamil, A. Mahmood, A. Zafar, M. Haroon, H. N. Bhatti, Aust. J. Chem. 2015, 10, 1502.
| Crossref | GoogleScholarGoogle Scholar |