Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Thermal and Spectral Analysis of Novel Amide-Tethered Polymers from Poly(allylamine)

Paolo N. Grenga B , Matthew J. Nethercott C , Ayeisca E. Mateo A , Mathew Patenaude D , Todd Hoare D , David P. Weliky C and Ronny Priefer A B E
+ Author Affiliations
- Author Affiliations

A College of Pharmacy, Western New England University, Springfield, MA 01119, USA.

B Department of Chemistry, Biochemistry, and Physics, Niagara University, NY 14109, USA.

C Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.

D Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada.

E Corresponding author. Email: ronny.priefer@wne.edu

Australian Journal of Chemistry 69(4) 458-466 https://doi.org/10.1071/CH15472
Submitted: 4 August 2015  Accepted: 6 September 2015   Published: 28 September 2015

Abstract

Post-polymerization modification of poly(allylamine hydrochloride) was applied to synthesize a library of amide-linked polyelectrolytes with tethered aliphatic, aromatic, and cubyl moieties. The efficacy of amidation was determined to be between 12 and 98 %, depending on the electronics, sterics, and solubility of the amide linkage. 13C solid-state NMR was used to further validate their structure. Thermogravimetric analysis and differential scanning calorimetry analysis indicated that none of the new polymers displayed a classic melt/freeze profile, but all displayed onset decomposition temperatures smaller than 215°C. We anticipate that the structure–property relationships observed in the resulting library of graft-modified polymers can facilitate better understanding of how to design polyelectrolytes for the construction of well-defined multilayer systems.


References

[1]  D. A. Schluter, C. Hawker, J. Sakamoto, Synthesis of Polymers: New Structures and Methods 2012 (Wiley-VCH: Weinheim).

[2]  M. Leclerc, J.-F. Morin, Design and Synthesis of Conjugated Polymers 2010 (Wiley-VCH: Weinheim).

[3]  Y. Chujo, Conjugated Polymer Synthesis: Methods and Reactions 2010 (Wiley-VCH: Weinheim).

[4]  F. J. Davis, Polymer Chemistry 2004 (Oxford University Press: New York, NY).

[5]  P. Theato, H.-A. Klok, Functional Polymers by Post-Polymerization Modification: Concepts, Guidelines, and Applications 2013 (Wiley-VCH: Weinheim).

[6]  J. Romulus, J. T. Henssler, M. Weck, Macromolecules 2014, 47, 5437.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlyntbnM&md5=e0ed6aaed34d1512b421b4e739d45543CAS |

[7]  K. A. Günay, P. Theato, H.-A. Klok, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  W. B. Stockton, M. F. Rubner, Macromolecules 1997, 30, 2717.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisFWitr0%3D&md5=4fe17a0c69686ef0b0ca44525d250e88CAS |

[9]  M. Ferreira, J. H. Cheung, M. F. Rubner, Thin Solid Films 1994, 244, 806.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktlOjtLk%3D&md5=707ca7495dbfa1e9c9f8dd83b7a83ef0CAS |

[10]  M. Ferreira, M. F. Rubner, Macromolecules 1995, 28, 7107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVKrtr4%3D&md5=c6637ec504d33f5d1c52c124d1d4a27cCAS |

[11]  A. C. Fou, M. F. Rubner, Macromolecules 1995, 28, 7115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVKrtr8%3D&md5=3998bd50d2575f0b353300239379f1f2CAS |

[12]  J. H. Cheung, W. B. Stockton, M. F. Rubner, Macromolecules 1997, 30, 2712.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisFWjurY%3D&md5=4b1c7c637f99e7ea0aca25d1fd7c4000CAS |

[13]  M. K. Ram, M. Salerno, M. Adami, P. Faraci, C. Nicolini, Langmuir 1999, 15, 1252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVOltQ%3D%3D&md5=0f5c2535ce19516d81357c14dee1f765CAS |

[14]  J. Lukkari, M. Salomaki, A. Viinikanoja, T. Aaritalo, J. Paukkunen, N. Kocharova, J. Kankare, J. Am. Chem. Soc. 2001, 123, 6083.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFOhtLo%3D&md5=df27547fea42067965b3a797d4ada39fCAS | 11414842PubMed |

[15]  G. Zotti, G. Schiavon, S. Zecchin, A. Berlin, G. Giro, Synth. Met. 2001, 121, 1381.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslKjt7k%3D&md5=38102c97ca1527a784a64357790af5a4CAS |

[16]  H. A. Kim, B. H. Sohn, W. Lee, J.-K. Lee, S. J. Choi, S. J. Kwon, Thin Solid Films 2002, 419, 173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosVSkt7o%3D&md5=2778f2a8b0172d05db36d16435f18b0aCAS |

[17]  M.-K. Park, K. Onishi, J. Locklin, F. Caruso, R. C. Advincula, Langmuir 2003, 19, 8550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVyntL4%3D&md5=6918a37289108850a3887b918c9701a7CAS |

[18]  F. Trivinho-Strixino, E. C. Pereira, S. V. Mello, O. N. Oliveria, Langmuir 2004, 20, 3740.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFymsLc%3D&md5=1b76328f709bf72c01d97cc2b0aaca8eCAS | 15875409PubMed |

[19]  S. Han, B. Lindholm-Sethson, Electrochim. Acta 1999, 45, 845.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtl2rtQ%3D%3D&md5=93e62077c6f3cbc400be5b56aff18842CAS |

[20]  A. C. Fou, O. Onitsuka, M. Ferreira, M. F. Rubner, B. R. Hsieh, J. Appl. Phys. 1996, 79, 7501.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivFersLs%3D&md5=ab3d07d5d51a98107e976354e5437cf8CAS |

[21]  H. Hong, D. Davidov, Y. Avany, H. Chayet, E. Z. Farggi, R. Neumann, Adv. Mater. 1995, 7, 846.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVags7k%3D&md5=6271f9f42214eef494aafe8c0fbd5fd7CAS |

[22]  D. W. Kim, A. Blumstein, J. Kumar, Chem. Mater. 2001, 13, 243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1Klug%3D%3D&md5=6e44a23c8b20c82fefa8fdc4d31c562eCAS |

[23]  M. R. Pinto, B. M. Kristal, K. S. A. Schanze, Langmuir 2003, 19, 6523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVaitr4%3D&md5=28cf89217f98acae9c41337f319fcee2CAS |

[24]  S. Kato, J. Am. Chem. Soc. 2005, 127, 11538.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvVCrtr0%3D&md5=5bfedc1f627f1fae2c81935b13ead216CAS | 16104695PubMed |

[25]  S. Kim, J. Jackiw, E. Robinson, K. S. Schanze, J. R. Reynolds, Macromolecules 1998, 31, 964.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXovFOkuw%3D%3D&md5=93ac3ae7f76aec2879b0d42dbc12d358CAS |

[26]  P. K. H. Ho, M. Granstrom, R. H. Friend, N. C. Greenham, Adv. Mater. 1998, 10, 769.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksFGmu7Y%3D&md5=2d9122aa543fbfde1fc28c01a0503f07CAS |

[27]  P. K. H. Ho, J.-S. Kim, J. H. Burroughes, H. Becker, S. F. Y. Li, T. M. Brown, F. Cacialli, R. H. Friend, Nature 2000, 404, 481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVyjtbY%3D&md5=09abbd9ec7e1d813c554e91427d5edc9CAS |

[28]  J. A. Lichter, K. J. Van Vliet, M. F. Rubner, Macromolecules 2009, 42, 8573.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Crsr7E&md5=b5699b91d8d982038dc4a65b282a39bdCAS |

[29]  D. Lee, R. E. Cohen, M. F. Rubner, Langmuir 2005, 21, 9651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFCms7c%3D&md5=f8d02678a9d954b312fdc026dfac5a54CAS | 16207049PubMed |

[30]  M. S. Pinto, M. E. McGahan, W. W. Steiner, R. Priefer, Colloids Surf., A 2011, 377, 182.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVKqsb4%3D&md5=2558fd4defb76b1ab1f8bc12cf4a6122CAS |

[31]  O. Kachurina, E. Knobbe, T. L. Metroke, J. W. Ostrander, N. A. Kotov, Int. J. Nanotechnol. 2004, 1, 347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFKmsrk%3D&md5=4ce8f9e69b838acdd465d556f25bc5f7CAS |

[32]  D. G. Shchukin, M. Zheludkevich, K. Yasakau, S. Lamaka, M. G. S. Ferreira, H. Mohwald, Adv. Mater. 2006, 18, 1672.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFWiurk%3D&md5=15849b4c83f72e7bfe398a6dc9e3845fCAS |

[33]  M. Zheludkevich, D. G. Shchukin, K. Yasakau, H. Mohwald, M. G. S. Ferreira, Chem. Mater. 2007, 19, 402.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1ejtA%3D%3D&md5=fed6cd443a15ed533d57ec41be40ac64CAS |

[34]  K. Wood, J. Boedicker, D. M. Lynn, P. T. Hammond, Langmuir 2005, 21, 1603.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVGktg%3D%3D&md5=3600311e541e3ee52473fa79a0235e5cCAS | 15697314PubMed |

[35]  D. Shenoy, A. Antipov, G. B. Sukhorukov, in Polymeric Gene Delivery (Ed. M. M. Amiji) 2005, Ch. 25, pp. 399–416 (CRC Press: Boca Raton, FL).

[36]  G. Decher, J. D. Hong, Makromol. Chem., Macromol. Symp. 1991, 46, 321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXms1Citbs%3D&md5=49ca9682c937acaeda9a482d20d4be9fCAS |

[37]  G. Decher, J. B. Schlenoff, Multilayer Thin Films 2013 (Wiley-VCH: Weinheim).

[38]  R. Priefer, K. Sowers, T. D. Krauss, M. E. McGahan, T. W. Smith, Thin Solid Films 2012, 520, 6170.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFeru7Y%3D&md5=3a9237c022de4755b90379346918fdacCAS |

[39]  R. Priefer, P. N. Grenga, A. N. Mandrino, D. M. Raymond, K. E. Leach, T. D. Krauss, Surf. Sci. 2010, 604, 59.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyqtrjE&md5=574722b1d1499e6f3967e11172432a9fCAS |

[40]  R. Priefer, K. E. Leach, T. D. Krauss, J. R. Drapo, M. L. Ingalsbe, M. A. van Dongen, J. C. Cadwalader, M. A. Baumler, M. S. Pinto, Surf. Coat. Technol. 2008, 202, 6109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2ju7bE&md5=1a8c4f6c24c3389a660829ef1b56812cCAS |

[41]  J. R. Griffiths, G. P. Savage, R. Priefer, Thermochim. Acta 2010, 499, 15.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yjtrs%3D&md5=b26e783010b570f1c5390e471e3bd998CAS |

[42]  C. E. Atkinson, A Novel Approach to the Rational Design of Artificial Enzymes 2001, Ph.D. thesis, University of London.

[43]  F. M. Menger, A. V. Eliseev, B. A. Migulin, J. Org. Chem. 1995, 60, 6666.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotleltLo%3D&md5=aba29d9321e11f245bbf701844f3d8fcCAS |

[44]  M. J. Nethercott, Sample Preparation and 2D Solid State Nuclear Magnetic Resonance Studies of the FP-Hairpin Construct of the HIV GP41 Protein 2012, Ph.D. thesis, Michigan State University.

[45]  J. Yang, D. P. Weliky, Biochemistry 2003, 42, 11879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVOisrs%3D&md5=01805e3a7048d446852b623174247226CAS | 14529300PubMed |

[46]  C. R. Morcombe, K. W. Zilm, J. Magn. Reson. 2003, 162, 479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Wgtrw%3D&md5=c5b8479f3566f52194eedc8dbfef6174CAS | 12810033PubMed |

[47]  N. Tanaka, K. Nakagawa, H. Iwasaki, K. Hosoya, K. Kimata, T. Araki, D. G. Patterson, J. Chromatogr. A 1997, 781, 139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvVKlsLg%3D&md5=3fe220a7674ff199e10170677de22a47CAS |

[48]  W. B. Motherwell, C. E. Atkinson, A. E. Aliev, S. Y. F. Wong, B. H. Warrington, Angew. Chem., Int. Ed. 2004, 43, 1225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitlKgsbY%3D&md5=a92245f5be81ecbe67f65e2c3e3bd930CAS |

[49]  M. Mahkam, N. Sharifi-Sanjani, Polym. Degrad. Stab. 2003, 80, 199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFGrtrY%3D&md5=ad16058244b8ea958938c1c2e2821004CAS |

[50]  M. Mahkam, Drug Delivery 2010, 17, 158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1Kmsrc%3D&md5=ff92d2e71ed7b570382f868fc677711bCAS | 20141506PubMed |

[51]  J. Scheirs, Compositional and Failure Analysis of Polymers: A Practical Approach 2000 (Wiley: New York, NY).

[52]  W.-S. Jang, A. T. Jensen, J. L. Lutkenhaus, Macromolecules 2010, 43, 9473.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKjsLjK&md5=0cd75a120a83602780dda4c3d582fcc6CAS |