Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of Eu-Doped Bi2O3/CeO2 Composite with Enhanced Photocatalytic Activity by a Facile Sol–Gel–Calcination Route

Fengjun Zhang A , Guosheng Xiao A , Wei Lu A , Tianye Wang A , Limin Xuan A and Jie Yu B C
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China.

B China-Japan Union Hospital, Jilin University, Changchun 130033, China.

C Corresponding author. Email: jieyu0245@163.com

Australian Journal of Chemistry 68(10) 1562-1568 https://doi.org/10.1071/CH15083
Submitted: 19 February 2015  Accepted: 19 April 2015   Published: 29 May 2015

Abstract

Eu-Doped Bi2O3/CeO2 composites were successfully synthesized by a facile sol–gel–calcination route. The as-prepared composites were prepared with different molar ratios of Bi/Ce/Eu by the sol–gel route, and then calcined at 500°C for 2 h. The photocatalytic efficiencies of all composites were tested by degradation of methyl orange (MO) under visible light irradiation. The result suggested that the best composite is the one that was prepared with a Bi/Ce/Eu mole ratio of 8 : 8 : 1, and achieved a MO degradation rate of nearly 98.5 % within 2 h of irradiation. The as-prepared composites were characterized by X-ray diffraction, scanning electron microscopy, inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV-visible diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The X-ray diffraction and scanning electron microscopy results suggested that Eu doping may have led to some lattice distortion and particle aggregation that enhanced the photocatalytic activity of the photocatalyst. The UV-visible diffuse reflectance spectroscopy and photoluminescence spectroscopy results showed that Eu-doped Bi2O3/CeO2 exhibited higher visible light response properties and enhanced separation of the photogenerated electron–hole pairs, which is the main reason for the higher photocatalytic activity. In general, this study could provide a facile route to synthesize Eu-doped Bi2O3/CeO2 composites with enhanced photocatalytic activity by a sol–gel–calcination route for environmental purification.


References

[1]  Y. Lv, L. Yu, H. Huang, H. Liu, Y. Feng, J. Alloys Compd. 2009, 488, 314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGltr%2FE&md5=cab455f94e8ac4ffaaf2da91a867574eCAS |

[2]  M. L. Marin, L. Santos-Juanes, A. Arques, A. M. Amat, M. A. Miranda, Chem. Rev. 2012, 112, 1710.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqsLzO&md5=4b81f5d3c9ccf8de5ea68547ffdfca8bCAS | 22040166PubMed |

[3]  T.-S. Yang, M.-C. Yang, C.-B. Shiu, W.-K. Chang, M.-S. Wong, Appl. Surf. Sci. 2006, 252, 3729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1GktL4%3D&md5=d8db515a19e50069e6cf55fd3d2dab00CAS |

[4]  X. Chen, S. S. Mao, Chem. Rev. 2007, 107, 2891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslyrurc%3D&md5=cfd6913053ff5883f6e3ce78776d0874CAS | 17590053PubMed |

[5]  A. Hameed, T. Montini, V. Gombac, P. Fornasiero, J. Am. Chem. Soc. 2008, 130, 9658.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFyjurk%3D&md5=479981817cd43bacdfb7afc5a0cf1fe9CAS | 18598025PubMed |

[6]  S. Y. Chai, Y. J. Kim, M. H. Jung, A. K. Chakraborty, D. Jung, W. I. Lee, J. Catal. 2009, 262, 144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Wqs7c%3D&md5=948579be10bd0629b2945eba6743ece8CAS |

[7]  A. K. Chakraborty, M. E. Hossain, M. M. Rhaman, K. M. A. Sobahan, J. Environ. Sci. (Beijing, China) 2014, 26, 458.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSis7nJ&md5=b06be08ade172130e9e5e10262372b56CAS |

[8]  S. Balachandran, M. Swaminathan, J. Phys. Chem. C 2012, 116, 26306.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKhsL7O&md5=fdd3706a8cd0e467bd2524f88b804cd3CAS |

[9]  S.-H. Hsieh, A. Manivel, G.-J. Lee, J. J. Wu, Mater. Res. Bull. 2013, 48, 4174.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFKlt7nO&md5=a7588a38f553f57271764c731923e1d2CAS |

[10]  Q. Wang, S. Yu, Z. Tan, R. Zhang, Z. Li, X. Gao, B. Shen, H. Su, CrystEngComm 2015, 17, 671.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvV2gtLbN&md5=1db1f911ad2703e7cbe4d90e5edfa925CAS |

[11]  L. Li, B. Yan, J. Non-Cryst. Solids 2009, 355, 776.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltl2murc%3D&md5=66b480ddba2c214886b483ec23a0406fCAS |

[12]  Z. Zou, C. Xie, S. Zhang, X. Yu, T. Zou, J. Li, J. Alloys Compd. 2013, 581, 385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsV2ktb7I&md5=2beb3f60c3a48d0a51948cf496fa1f5eCAS |

[13]  M. Wang, Y. Che, C. Niu, M. Dang, D. Dong, J. Hazard. Mater. 2013, 262, 447.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsl2gsbjP&md5=335aa7c097e829c50464b0d801862419CAS | 24076480PubMed |

[14]  Z. Liu, J. Zhang, B. Han, J. Du, T. Mu, Y. Wang, Z. Sun, Microporous Mesoporous Mater. 2005, 81, 169.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1aqtrg%3D&md5=938d29dd0561782f6a30a0949b52a095CAS |

[15]  İ. Taşçıoğlu, M. Arı, İ. Uslu, S. Koçyiğit, Y. Dağdemir, V. Çorumlu, S. Altindal, Ceram. Int. 2012, 38, 6455.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  A. Dash, S. Sarkar, V. N. Adusumalli, V. Mahalingam, Langmuir 2014, 30, 1401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpt1Kgsw%3D%3D&md5=1423666abc6dd74c9622014d757a5039CAS | 24447214PubMed |

[17]  Q. Chen, D. Jiang, W. Shi, D. Wu, Y. Xu, Appl. Surf. Sci. 2009, 255, 7918.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslyqur0%3D&md5=fc5ce4ce721a9f8aa826da0eb8a7263cCAS |

[18]  J. Xu, Y. Ao, D. Fu, C. Yuan, Appl. Surf. Sci. 2008, 255, 2365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVChsLrI&md5=3d7cb808ede0f93006aab3286967da18CAS |

[19]  M. Wang, Q. Liu, Y. Che, L. Zhang, D. Zhang, J. Alloys Compd. 2013, 548, 70.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslajs7nM&md5=9d56594476f109bcaf18f11879ba2de0CAS |

[20]  S. Watanabe, X. Ma, C. Song, J. Phys. Chem. C 2009, 113, 14249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFCmu7Y%3D&md5=3fcbf60be07dff997fd5d27236a77c2fCAS |

[21]  Y. Wang, X. Jiang, C. Pan, J. Alloys Compd. 2012, 538, 16.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWhtrrI&md5=f087f6ec8fff007de7070d062b178835CAS |

[22]  L. Ge, Mater. Chem. Phys. 2008, 107, 465.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVejsLfL&md5=1552b32b85e2cca61cde403111f140d1CAS |

[23]  H. Yu, H. Irie, K. Hashimoto, J. Am. Chem. Soc. 2010, 132, 6898.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVejuro%3D&md5=c658d77e19c866e7262e768d79f957e7CAS | 20429504PubMed |

[24]  Y. Hou, X. Li, Q. Zhao, X. Quan, G. Chen, Environ. Sci. Technol. 2010, 44, 5098.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVahsLo%3D&md5=b858df2eb0e7e1d4660e9640aa068162CAS | 20527761PubMed |

[25]  X. Zhang, Z. Ai, F. Jia, L. Zhang, J. Phys. Chem. C 2008, 112, 747.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFersQ%3D%3D&md5=bf2a5573a46861b9313c316aebd5bffaCAS |

[26]  Y. Li, Z. Zhang, Y. Zhang, X. Sun, J. Zhang, C. Wang, Z. Peng, H. Si, Ceram. Int. 2014, 40, 13275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXoslGhtbk%3D&md5=d83e5efe8313970a046ffedb4cc46bf6CAS |

[27]  M. Wang, Y. Che, C. Niu, M. Dang, D. Dong, J. Rare Earths 2013, 31, 878.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Slu7%2FI&md5=c1c3a109292bdcf04f51bb784aaae1c1CAS |

[28]  G. S. Xiao, J. L. Liu, Z. J. Liu, F. J. Zhang, C. Lv, Faguang Xuebao 2014, 35, 956.[In Chinese]
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVyrurfL&md5=8b157635d5c041307d7b7c7ec8bf950fCAS |

[29]  X. Liu, S. Chen, X. Wang, J. Lumin. 2007, 127, 650.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptFyksLc%3D&md5=07fcc3a2bb0a783b63a1cbc5e4e583beCAS |

[30]  Z. Zhang, W. Wang, L. Wang, S. Sun, ACS Appl. Mater. Interfaces 2012, 4, 593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFWrtw%3D%3D&md5=e2c85fc3134326d6ad24630f3a41b047CAS | 22248230PubMed |

[31]  W. F. Yao, X. H. Xu, H. Wang, J. T. Zhou, X. N. Yang, Y. Zhang, S. X. Shang, B. B. Huang, Appl. Catal., B 2004, 52, 109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVehuro%3D&md5=b6a080bffae09a8fe6cc7605c03f57e9CAS |