Investigation of the Effects of Various Cyclodextrins on the Stabilisation of Human Serum Albumin by a Spectroscopic Method
Mohsen Oftadeh A D , Golamreza Rezaei Behbahani B D , Ali Akbar Saboury C and Shahnaz Rafiei A BA Chemistry Department, Payame Noor University, 19395-4697 Tehran, Iran.
B Chemistry Department, Imam Khomeini International University, 96818-34148 Qazvin, Iran.
C Institute of Biochemistry and Biophysics, University of Tehran, 13145-1384 Tehran, Iran.
D Corresponding authors. Email: mmmoft@gmail.com; grb402003@yahoo.com
Australian Journal of Chemistry 68(12) 1894-1899 https://doi.org/10.1071/CH15079
Submitted: 21 February 2015 Accepted: 5 May 2015 Published: 9 June 2015
Abstract
The binding parameters between cyclodextrins (CDs) and human serum albumin (HSA) were investigated by isothermal titration calorimetry (ITC), fluorescence quenching, and UV-vis absorption spectroscopy at 300 K in 50 mM phosphate buffer solution. Among the various CDs investigated, β-CD has the greater ability to decrease the aggregation of HSA and the results indicated that the inhibition order is γ-CD < α-CD < β-CD. The obtained heats for HSA+CDs interactions were reported and analysed in terms of the extended solvation model, which was used to reproduce the enthalpies of HSA interactions with CDs over a broad range of complex concentrations. The binding constant and thermodynamic parameters were obtained. These suggested that the binding reaction was driven by both enthalpy and entropy, and electrostatic interactions played a major role in the stabilising of HSA. The parameters and reflected the net effect of β-CD on the HSA stability at low and high cyclodextrin concentrations, respectively. The positive values for indicated that β-CD stabilises the HSA structure at low concentrations. The UV absorption intensity of theses complexes increased and a slight red shift was observed in the absorbance wavelength with increasing the CD concentration. The fluorescence intensity of HSA decreased regularly and a slight blue shift was observed for the emission wavelength with increasing CD concentration. The results indicate that the CD complex could quench the fluorescence of HSA and changes the microenvironment of the tryptophan residue.
References
[1] D. Romanini, G. Avalle, B. Farruggia, B. Nerli, G. Pico, Chem. Biol. Interact. 1998, 115, 247.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1emsL4%3D&md5=29bfd190d31e50836a3fd1342db64060CAS | 9851293PubMed |
[2] D. C. Carter, J. X. Ho, Adv. Protein Chem. 1994, 45, 153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVajtLk%3D&md5=aadeebb050227a7d537e33cf35fb64a6CAS | 8154369PubMed |
[3] H. M. He, D. C. Carter, Nature 1992, 358, 209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsVGmurg%3D&md5=13879a6391857e0052bd0f60f65c1f6dCAS |
[4] T. Peters, Adv. Protein Chem. 1985, 37, 161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtV2js70%3D&md5=f3f52cdda6ff260c34346a772a17afd7CAS | 3904348PubMed |
[5] F. Q. Cheng, Y. P. Wang, Z. P. Li, C. Dong, Spectrochim. Acta A 2006, 65, 1144.
| Crossref | GoogleScholarGoogle Scholar |
[6] S. Tavornvipas, F. Hirayama, S. Takeda, H. Arima, K. Uekama, J. Pharm. Sci. 2006, 95, 2722.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSis7zM&md5=8d734d0a010f67faad0e01e00ef7132cCAS | 16917853PubMed |
[7] A. Rieutord, P. Bourget, G. Troche, J. F. Zazzo, Int. J. Pharm. 1995, 119, 57.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvFGqt7k%3D&md5=69e3a3f0ceef6bd79f4e737788d781aaCAS |
[8] M. Bogdan, A. Pirnau, C. Floare, C. Bugeac, J. Pharm. Biomed. Anal. 2008, 47, 981.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlSltrY%3D&md5=e88296746c4d5a7ff06f9eaf37bf6898CAS | 18495406PubMed |
[9] G. Colmenarejo, Med. Res. Rev. 2003, 23, 275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVWitLg%3D&md5=6e367daeb44126228dfcdd6f71f6a508CAS | 12647311PubMed |
[10] A. K. Bordbar, N. Sohrabi, H. Gharibi, Bull. Korean Chem. Soc. 2004, 25, 791.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFSqs7o%3D&md5=8f85073f38d8aac9e0126a78afbc65d3CAS |
[11] Y. Yue, X. Chen, J. Qin, X. Yao, Dyes Pigments 2008, 79, 176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls12rsbo%3D&md5=885a87b29127dad470f74c1c2ac06931CAS |
[12] G. Zhang, Q. Que, J. Pan, J. Guo, J. Mol. Struct. 2008, 881, 132.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVKksrY%3D&md5=6ebfedb4df5d6910db1ce141da88540fCAS |
[13] T. Wang, B. Xiang, Y. Wang, C. Chen, Y. Dong, H. Fang, M. Wang, Colloids Surf. B 2008, 65, 113.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlSns74%3D&md5=9d381a9f2aa6d68ba5d9c6d9b4a4a2cbCAS |
[14] E. Budzisz, U. Krajewska, M. Rozalski, Pol. J. Pharmacol. 2004, 56, 473.
| 1:CAS:528:DC%2BD2MXit1Glsr0%3D&md5=525183c7a5f5f661301c5922b6155015CAS | 15520503PubMed |
[15] H. Mansuri-Torshizi, T. S. Srivastava, H. K. Perekh, M. P. Chitnis, J. Inorg. Biochem. 1992, 45, 135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xit1Okt7Y%3D&md5=89ca5fa15b6a05b47682950828ca91eaCAS | 1624936PubMed |
[16] G. Zhao, H. Sun, H. Lin, S. Zhu, X. Su, Y. Chen, J. Inorg. Biochem. 1998, 72, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs12ltr0%3D&md5=7c40fbc96369d07cb14ac5b7044ef6efCAS | 10065535PubMed |
[17] A. Harada, Acc. Chem. Res. 2001, 34, 456.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktl2rurc%3D&md5=f991aef8330ad739de3ce1d558114eaeCAS | 11412082PubMed |
[18] J. Szejtli, G. Sebesty, Starch 1979, 31, 385.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhtVGhsrs%3D&md5=93ad999feda2da1072c077d7a45f340aCAS |
[19] R. Partanen, M. Ahro, M. Hakala, H. Kallio, P. Forssell, Eur. Food Res. Technol. 2002, 214, 242.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1Olu7g%3D&md5=abbeef0272129fe05f65da8bd25fed9fCAS |
[20] W. S. Cai, Y. M. Yu, X. G. Shao, J. Mol. Model. 2005, 11, 186.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCgu7vP&md5=bf4118bc4d210239c92ccf763b989455CAS |
[21] A. Weber, M. Herold, H. Brunner, G. E. M. Tovar, Thermochim. Acta 2004, 415, 69.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVCjsL4%3D&md5=b29372c94531a15f241c44c79114ba4dCAS |
[22] H. Mansoori-Torshizi, M. Islami-Moghaddam, A. A. Saboury, Acta Biochim. Biophys. Sin. (Shanghai) 2003, 35, 886.
| 1:CAS:528:DC%2BD2cXnsFOnurs%3D&md5=86c7c4cb7f67f6623a7d472bc76e8554CAS | 14515204PubMed |
[23] G. R. Behbehani, Bull. Korean Chem. Soc. 2005, 2, 238.
[24] G. R. Behbehani, Acta Chim. Slov. 2005, 52, 282.
[25] G. R. Behbehani, A. Taherkhani, L. Barzegar, A. A. Saboury, A. Divsalar, J. Sci. I. R. Iran 2011, 22, 117.
| 1:CAS:528:DC%2BC3MXhsVaqsr7M&md5=b1011db581f39a815b402550757bcd5aCAS |
[26] G. R. Behbehani, E. Tazikeh, A. A. Saboury, Bull. Korean Chem. Soc. 2006, 2, 208.
[27] G. R. Behbehani, S. Ghamamy, Thermochim. Acta 2006, 444, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFaqsLc%3D&md5=8b760900313418d628a3a5c1de2c1e89CAS |
[28] G. R. Behbehani, S. Ghamamy, W. E. Waghorne, Thermochim. Acta 2006, 448, 37.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Gms7o%3D&md5=bcd788c015b95bd3676ba94657c879bcCAS |
[29] G. R. Behbehani, E. Tazikeh, A. A. Saboury, Acta Chim. Slov. 2006, 53, 363.
| 1:CAS:528:DC%2BD28XhtFSjtLvP&md5=7bb71c1673c69c37c2faec1eae8b3073CAS |
[30] G. R. Behbehani, A. A. Saboury, Thermochim. Acta 2007, 452, 76.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12ms7rL&md5=edc0bdf9393f9575ec0f5d50cd5cc15dCAS |
[31] G. R. Behbehani, A. A. Saboury, A. Fallahbaghery, J. Solution Chem. 2007, 36, 1311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKrsL%2FJ&md5=2b4631ccd74e18a89db604aed00e5ba0CAS |
[32] G. R. Behbehani, A. A. Saboury, E. Taleshi, J. Solution Chem. 2008, 37, 619.
| Crossref | GoogleScholarGoogle Scholar |
[33] G. R. Behbehani, A. A. Saboury, J. Therm. Anal. Calorim. 2007, 89, 859.
[34] G. R. Behbehani, A. A. Saboury, E. Taleshi, J. Mol. Recognit. 2008, 21, 132.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFOjsrg%3D&md5=18348e4e80796d7d2eb99d1061f58597CAS | 18383101PubMed |
[35] G. R. Behbehani, A. A. Saboury, E. Taleshi, Colloids Surf. B 2008, 61, 224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFyjsg%3D%3D&md5=a40ed06c957e734cac5bdd46bcec495cCAS |
[36] K. Paal, J. Muller, L. Hegedus, Eur. J. Biochem. 2001, 268, 2187.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVarsb4%3D&md5=485c639e46e58de8d8d5439f1557b89fCAS | 11277943PubMed |
[37] N. Wang, L. Ye, F. F. Yan, R. Xu, Int. J. Pharm. 2008, 351, 55.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1OgsLk%3D&md5=33245556341b999cde0693a351210194CAS | 18029121PubMed |