Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Structure, Chemical Composition, and Catalytic Behaviour of Stoichiometric and Non-Stoichiometric LaMnO3 Toward Deep Oxidation of Ethanol

Hammami Ramzi A B and Habib Batis A
+ Author Affiliations
- Author Affiliations

A Unité de Recherches: Catalyse, Elaboration de Nanomatériaux et Didactique (CENAD), Faculty of Sciences, Chemistry Department, University of Tunis El Manar, 2092 Tunis, Tunisia.

B Corresponding author. Email: hammamiramzi2006@yahoo.fr

Australian Journal of Chemistry 68(12) 1900-1910 https://doi.org/10.1071/CH15107
Submitted: 5 March 2015  Accepted: 5 May 2015   Published: 3 June 2015

Abstract

A series of structurally modified LarMnOδ (r = 0.80, 1.00, 1.25) perovskites have been investigated for ethanol deep oxidation in the temperature range 100–300°C. The catalysts were characterized by X-ray diffraction (XRD), Brunauer–Emmet–Teller (BET) surface area analysis, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), redox titration and CO2 adsorption. All samples are single perovskite phases without segregated phases. For La- and Mn-under-stoichiometric samples, the defects generated to maintain structure electroneutrality are positive holes and anion vacancies whereas for stoichiometric solids, the defects are positive holes and cation vacancies. The surface oxidation state and composition are critically controlled by the phase composition of the bulk. XPS results showed that the decrease in bulk La/Mn ratio induced a decrease in surface La enrichment. A concomitant decrease of basic site concentration was shown by CO2 adsorption. With lower surface La content, excess Mn sites and increasing concentrations of surface Mn4+ were observed. Catalytic properties in the oxidation reaction of ethanol are attributed to the variability of the manganese oxidation state, basic character of the material surface, which is related to the La/Mn atomic ratio, and to the oxygen storage capacity in the crystalline lattice of the catalysts. It was shown that La0.8MnO3–δ presents the best catalytic activity, due to low surface basicity (lowest La/Mn ratio) and high redox properties (highest Mn4+/Mn3+ ratio).


References

[1]  R. Hammami, S. Ben Aîssa, H. Batis, Appl. Catal. A. 2009, 353, 145.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVWjtA%3D%3D&md5=c27f00e65afd7e28225bdb53dc7cf563CAS |

[2]  N. H. Batis, P. Delichere, H. Batis, Appl. Catal. A. 2005, 282, 173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslehsLY%3D&md5=bffc5cf4dbd0d93aa5ee9283089b3e21CAS |

[3]  H. Najjar, H. Batis, Appl. Catal. A. 2010, 383, 192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1eru74%3D&md5=488507f1eac4ef0394a4ddba168cbbeaCAS |

[4]  H. Einaga, N. Maeda, Y. Teraoka, Appl. Catal. B 2013, 142–143, 406.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  R. Spinicci, M. Faticanti, P. Marini, S. De Rossi, P. Porta, J. Mol. Catal. Chem. 2003, 197, 147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlKjur8%3D&md5=3dbbee76ba8147efd4c5e32f94f22159CAS |

[6]  W. B. Li, J. X. Wang, H. Gong, Catal. Today 2009, 148, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ymsbrF&md5=12c5e5145a9a2fd30c0239dab4529d24CAS |

[7]  S. A. Hosseini, D. Salari, A. Niaei, S. A. Oskoui, J. Ind. Eng. Chem. 2013, 19, 1903.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlCqu7g%3D&md5=3ab5495dc1726576bdd815840fbf5d70CAS |

[8]  M. Chen, H. Q. Huang, X. M. Zheng, M. A. Morris, Aust. J. Chem. 2002, 55, 757.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFKgs70%3D&md5=09e83d99fd7265b2638203bd6f320b72CAS |

[9]  S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri, H. Alamdari, Chem. Rev. 2014, 114, 10292.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1WlurfL&md5=53cc528abbf232271a9febc7a01f17f0CAS | 25253387PubMed |

[10]  C. Lahousse, A. Bernier, P. Grange, B. Delmon, P. Papaefthimiou, T. Ioannides, X. Verykios, J. Catal. 1998, 178, 214.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls1Shtbg%3D&md5=0a6302d8597057f48b28d585b8002cd6CAS |

[11]  F. Goncalves, P. R. S. Medeiros, J. G. Eon, L. G. Appel, Appl. Catal. A. 2000, 193, 195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlOgsg%3D%3D&md5=1e53d7e9b1b16def159f1f82bbfba9b4CAS |

[12]  B. Białobok, J. Trawczyński, W. Miśta, M. Zawadzki, Appl. Catal. B 2007, 72, 395.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  B. P. Barbero, J. A. Gamboa, L. E. Cadús, Appl. Catal. B 2006, 65, 21.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlGltbY%3D&md5=485e81cc25071992a3dc69b9dd62a9cfCAS |

[14]  P. H. T. Ngamou, K. K. Höinghaus, N. Bahlawane, Catal. Commun. 2011, 12, 1344.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslOktL4%3D&md5=8148bc1034015bf3361d5c8e5045f672CAS |

[15]  V. Blasin-Aubé, J. Belkouch, L. Monceaux, Appl. Catal. B 2003, 43, 175.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  A. N. Grundy, B. Hallsteld, L. J. Gauckler, Solid State Ionics 2004, 173, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVarurzN&md5=264fd05c8f4525778b264652c8ba2400CAS |

[17]  M. Yahia, H. Batis, Eur. J. Inorg. Chem. 2003, 2486.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1emsbo%3D&md5=d063578b4257379e0bf5a835d0bb86a3CAS |

[18]  S. Ponce, M. A. Peña, J. L. G. Fierro, Appl. Catal. B 2013, 134, 251.

[19]  X. Meng, F. He, X. Shen, J. Xiang, P. Wang, Ind. Eng. Chem. Res. 2011, 50, 11037.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFaitrvO&md5=2120883d647230cdd38329aec891a2e4CAS |

[20]  G. T. Shimizu, Appl. Catal. 1986, 28, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkslOhtbw%3D&md5=a25f6766357ae6cd5897d830f164535aCAS |

[21]  R. Hammami, N. Harrouch Batis, H. Batis, C. Minot, Solid State Sci. 2009, 11, 885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFSjtrY%3D&md5=83218ef67c7a0bd64d4fe3acc5ffd7d6CAS |

[22]  H. Vincent, M. Audier, S. Pignard, G. Dezanneau, J. P. Senateur, J. Solid State Chem. 2002, 164, 177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1Cjsrs%3D&md5=9dfb733f55a6cf9affb9ccc11d3b4267CAS |

[23]  R. Spinicci, A. Delmastro, S. Ronchetti, A. Tofanari, Mater. Chem. Phys. 2003, 78, 393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1emsbY%3D&md5=68e6dc7165145b4b050b459928c0f3cfCAS |

[24]  M. Wolcyrz, R. Horyn, F. Boure, E. Bukowska, J. Alloys Compd. 2003, 353, 170.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlers7o%3D&md5=02c9ab2c99d42e1ff6eb40a7496558c0CAS |

[25]  J. Chen, M. Shen, X. Wang, G. Qi, J. Wang, W. Li, Appl. Catal. B 2013, 134–135, 251.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  J. A. M. van Roosmalen, P. van Vlaanderen, E. H. P. Cordfunke, W. L. IJdo, D. J. W. IJdo, J. Solid State Chem. 1995, 114, 516.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjs1Wrurw%3D&md5=3711a22c0238d49c16e606ff4c22a117CAS |

[27]  H. P. Klug, L. E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials 1962 (Wiley: London).

[28]  R. Klimkiewicz, J. Trawczyňski, Appl. Catal. A. 2009, 360, 199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlKkt7g%3D&md5=9d56199ab8b902aacb8426a016de6235CAS |

[29]  J. A. M. Van Roosmalen, E. H. P. Cordfunke, R. B. Helmholdt, H. W. Zandbergen, J. Solid State Chem. 1994, 110, 100.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlvFWkt70%3D&md5=d6b7844d6730797a915bd9fbe5a89cccCAS |

[30]  J. A. M. Van Roosmalen, E. H. P. Cordfunke, J. Solid State Chem. 1994, 110, 106.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXntFansbs%3D&md5=a091848c097f7e4219d6b46333ba0585CAS |

[31]  B. C. Tofield, W. R. Scott, J. Solid State Chem. 1974, 10, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXjslChug%3D%3D&md5=cad0351935bb07640529c2a83550fbe1CAS |

[32]  R. J. H. Voorhoeve, J. P. Remeika, L. E. Trimble, A. S. Cooper, F. J. Disalvo, P. K. Gallagher, J. Solid State Chem. 1975, 14, 395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXmtV2ktr0%3D&md5=cd5245c30e6cb98417c19474c448bc66CAS |

[33]  H. Taguchi, A. Sugita, M. Nagao, J. Solid State Chem. 1995, 119, 164.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosFOnsL0%3D&md5=1266c2e53b057a8981c6ab973e313dcfCAS |

[34]  J. F. Mitchell, D. N. Argyriou, C. D. Potter, D. G. Hinks, J. D. Jorgensen, S. D. Bader, Phys. Rev. B 1996, 54, 6172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsFyrsLc%3D&md5=bb39fc8425ccac3ede650457b0716ddfCAS |

[35]  J. A. Alonso, M. J. Martinez-Lope, M. T. Casais, J. L. MacManus-Driscoll, P. S. I. P. N. de Silva, L. F. Cohen, M. T. Fernandez-Diaz, J. Mater. Chem. 1997, 7, 2139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVWmsr4%3D&md5=a3cb8ef0630f75fb8465666823e4b8b9CAS |

[36]  E. M. Vogel, D. W. Johnson, P. K. Gallagher, J. Am. Ceram. Soc. 1977, 60, 31.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhsV2ku78%3D&md5=d784c10b1083ac185deffb07d71c1c2bCAS |

[37]  F. A. Kröger, H. J. Vink, Solid State Phys. 1956, 3, 307.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  A. Gupta, T. R. McGuire, P. R. Duncombe, M. Rupp, J. Z. Sun, W. J. Gallagher, G. Xiao, Appl. Phys. Lett. 1995, 67, 3494.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslCmsrY%3D&md5=da9d5efb6a0bf0a9fd3d61ecce13b747CAS |

[39]  P. A. Joy, C. Raj Sankar, S. K. Date, J. Phys. Condens. Matter 2002, 14, L663.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosF2gtLs%3D&md5=6a39600b8d96dddb3742b77f6cbfd518CAS |

[40]  M. Palcut, K. Wiik, T. Grande, J. Phys. Chem. C 2007, 111, 813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cgu7fI&md5=cdab75d48f8f59f704526bccb5601939CAS |

[41]  A. Arulraj, R. Mahesh, G. N. Subbarao, R. Mahendiran, A. K. Raychaudhari, C. N. R. Rao, J. Solid State Chem. 1996, 127, 87.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitFCltA%3D%3D&md5=4237042da24b2b5f3929c0d819bfd0b1CAS |

[42]  C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Taylor, R. H. Raymond, L. H. Gale, Surf. Interface Anal. 1981, 3, 211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhsVKmsQ%3D%3D&md5=cbe2b32b7b02333b96d5a2e4355a9fd1CAS |

[43]  M. Alifanti, J. Kirchenova, B. Delmon, Appl. Catal. A. 2003, 245, 231.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVOnt78%3D&md5=e5af78b6c0adfb18aa102986cab11b1cCAS |

[44]  E. Arendt, A. Maione, A. Klisinka, O. Sanz, M. Montes, S. Suarez, J. Blanco, P. Ruiz, Appl. Catal. A. 2008, 339, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsF2gtL8%3D&md5=0fc0f9cc50b4888b5e6270ae35c3d8f6CAS |

[45]  Y. Zhang-Steenwinkel, J. Bekers, A. Bilek, Appl. Catal. A. 2002, 235, 79.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVGktbk%3D&md5=61cc8c14780b38237ab06ad3754039b9CAS |

[46]  Y. Ng Lee, R. M. Lago, J. L. G. Fierro, V. Cortés, F. Sapiña, E. Mart?nez, Appl. Catal. A. 2001, 207, 17.

[47]  H. Najjar, H. Batis, J. F. Lamonier, O. Mentré, J. M. Giraudon, Appl. Catal. A. 2014, 469, 98.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWqtbzF&md5=6aac2f2af603f0a6b2781142c427347fCAS |

[48]  M. O’Connell, A. K. Norman, C. F. Hüttermann, M. A. Morris, Catal. Today 1999, 47, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvVSltrY%3D&md5=35cd7af74cca0a2296d440b188ff2d2bCAS |

[49]  C. K. Jorgensen, H. Berthon, Chem. Phys. Lett. 1972, 13, 186.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  M. Salavati-Niasari, J. Javidi, F. Davar, A. Amini Fazl, J. Alloys Compd. 2010, 503, 500.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVWiu74%3D&md5=ce54b87357561624065f5380bbb1e5cdCAS |

[51]  F. Davar, M. Salavati-Niasari, S. Baskoutas, Appl. Surf. Sci. 2011, 257, 3872.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVagtA%3D%3D&md5=c7e183f6a9faf0168a959877a4a8a22eCAS |

[52]  S. Brunauer, L. S. Deming, W. E. Deming, E. Teller, J. Am. Chem. Soc. 1940, 62, 1723.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH3cXjslyqtg%3D%3D&md5=05dd30969a5efcb3172e7d0ef67207d6CAS |

[53]  R. Hammami, H. Batis, C. Minot, Surf. Sci. 2009, 603, 3057.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wnu7vF&md5=f7d0b21964a21f706fb90d25f8ddf749CAS |

[54]  A. Gervasini, A. Auroux, J. Therm. Anal. 1991, 37, 1737.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsF2rsrY%3D&md5=8af51a2b81231fa102287d8ec10c256aCAS |

[55]  R. Lago, G. Bini, M. A. Peña, J. L. G. Fierro, J. Catal. 1997, 167, 198.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivV2hs78%3D&md5=f58c1d0614f33d601ec12e51db27e626CAS |

[56]  B. Mguig, M. Calatayud, C. Minot, J. Mol. Struct. 2004, 709, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCjsrfN&md5=9128de02a4b559a41241cb9d0d993295CAS |

[57]  H. Najjar, J. F. Lamonier, O. Mentré, J. M. Giraudon, H. Batis, Catal. Sci. Technol. 2013, 3, 1002.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslSltr0%3D&md5=b760fd28bbc098c9b97c799746a105a2CAS |

[58]  H. Rajesh, U. S. Ozkan, Ind. Eng. Chem. Res. 1993, 32, 1622.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkslyrt7w%3D&md5=db4ce8d4faf933e0597e8fd57708c448CAS |

[59]  K. Tabata, I. Matsumato, S. Kohihi, J. Mater. Sci. 1987, 22, 1882.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlvVCgu7o%3D&md5=2a65356fcb7d5e29f1057adb2e1435c6CAS |

[60]  Y. Guan, E. J. M. Hensen, Appl. Catal. A 2009, 361, 49.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlersL8%3D&md5=18b509ba12a1f31b1a8da746a6fe161fCAS |

[61]  H. Idriss, E. G. Seebauer, J. Mol. Catal. Chem. 2000, 152, 201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVOkuro%3D&md5=309ab1e9e5922fd44ca85f12cb49f56fCAS |

[62]  R. P. Bell, P. T. McTigue, J. Chem. Soc. 1960, 2983.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXhtFOqtbg%3D&md5=28d61c0aec8b50251e919f1da8188f63CAS |

[63]  P. Ballinger, F. A. Long, J. Am. Chem. Soc. 1960, 82, 795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXnt1CnsQ%3D%3D&md5=020aabf2648bc993f3671a67391defbcCAS |