Phase Transfer Catalysis Extends The Scope of The Algar–Flynn–Oyamada Synthesis of 3-Hydroxyflavones
Duong Nhu A B , Bill C. Hawkins A B D and Christopher J. Burns A B C EA ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Vic. 3052, Australia.
B Department of Medical Biology, The University of Melbourne, Vic. 3010, Australia.
C School of Chemistry, The Bio21 Institute, The University of Melbourne, Vic. 3010, Australia.
D Current address: Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand.
E Corresponding author. Email: burns@wehi.edu.au
Australian Journal of Chemistry 68(7) 1102-1107 https://doi.org/10.1071/CH14620
Submitted: 16 October 2014 Accepted: 21 November 2014 Published: 23 March 2015
Abstract
The Algar–Flynn–Oyamada reaction is the classical method to synthesize 3-hydroxyflavones from chalcones. Despite its relative simplicity, the reaction has several drawbacks including variable and often low product yields. We have found that phase transfer catalysis improves the yields and expands the scope of the Algar–Flynn–Oyamada reaction of a series of 4-benzyloxy-2-hydroxy chalcones.
References
[1] Ø. M. Andersen, K. R. Markham, Flavonoids: Chemistry, Biochemistry and Applications 2006 (CRC Press: Boca Raton, FL).[2] W. Ren, Z. Qiao, H. Wang, L. Zhu, L. Zhang, Med. Res. Rev. 2003, 23, 519.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFGkt7g%3D&md5=ce5219f69adb52dcbdd42d1c0a7cbbeeCAS | 12710022PubMed |
[3] C. Kanadaswami, L.-T. Lee, P.-P. H. Lee, J.-J. Hwang, F.-C. Ke, Y.-T. Huang, M.-T. Lee, In Vivo 2005, 19, 895.
| 1:CAS:528:DC%2BD2MXpsVeru7o%3D&md5=a078cec605ea2066a51275a7c6fce80cCAS | 16097445PubMed |
[4] E. Middleton, in Flavonoids in the Living System (Eds J. A. Manthey, B. S. Buslig) 1998, Vol. 439, Ch. 13, pp. 175–182 (Springer: New York, NY).
[5] T. P. T. Cushnie, A. J. Lamb, Int. J. Antimicrob. Agents 2005, 26, 343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFeitbfP&md5=98e758a0f8f75b4745a4b71691de475aCAS |
[6] D. D. Orhan, B. Özçelik, S. Özgen, F. Ergun, Microbiol. Res. 2010, 165, 496.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2isr7F&md5=320e74f73577c887c7211c56cb03d9aaCAS | 19840899PubMed |
[7] E. Middleton, C. Kandaswami, T. C. Theoharides, Pharmacol. Rev. 2000, 52, 673.
| 1:CAS:528:DC%2BD3MXislWktw%3D%3D&md5=08f60a086ef14c92d6b29089dc535193CAS | 11121513PubMed |
[8] O. Benavente-García, J. Castillo, J. Agric. Food Chem. 2008, 56, 6185.
| 18593176PubMed |
[9] C. J. Bennett, S. T. Caldwell, D. B. McPhail, P. C. Morrice, G. G. Duthie, R. C. Hartley, Bioorg. Med. Chem. 2004, 12, 2079.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtVKqtbc%3D&md5=ca05325fe59e3499037fad1eaefdd060CAS | 15080911PubMed |
[10] M. F. García-Saura, M. Galisteo, I. N. Villar, A. Bermejo, A. Zarzuelo, F. L. Vargas, J. Duarte, Mol. Cell. Biochem. 2005, 270, 147.
| Crossref | GoogleScholarGoogle Scholar |
[11] L. Chen, J. Li, C. Luo, H. Liu, W. Xu, G. Chen, O. W. Liew, W. Zhu, C. M. Puah, X. Shen, H. Jiang, Bioorg. Med. Chem. 2006, 14, 8295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOjt7zF&md5=101731d8f708dde83168966348b2492fCAS | 17046271PubMed |
[12] J. A. Smith, D. J. Maloney, S. M. Hecht, D. A. Lannigan, Bioorg. Med. Chem. 2007, 15, 5018.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFOjtr8%3D&md5=de5b9b395708350faefdba34ee70b4f8CAS | 17512736PubMed |
[13] M. Rode, R. C. Gupta, B. K. Karale, S. S. Rindhe, J. Heterocycl. Chem. 2008, 45, 1597.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCjsLzE&md5=07a33abffc84aa37190027016636cb78CAS |
[14] C. X. Qin, X. Chen, R. A. Hughes, S. J. Williams, O. L. Woodman, J. Med. Chem. 2008, 51, 1874.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1ektbs%3D&md5=29088e9e992e1d856d877a27063c4d2dCAS | 18307286PubMed |
[15] N. G. Amado, B. F. Fonseca, D. M. Cerqueira, V. M. Neto, J. G. Abreu, Life Sci. 2011, 89, 545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1agt7%2FO&md5=dd4812cc8b52f64c2423784c983a15a6CAS | 21635906PubMed |
[16] T. A. Dias, C. L. Duarte, C. F. Lima, M. F. Proença, C. Pereira-Wilson, Eur. J. Med. Chem. 2013, 65, 500.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFemurvE&md5=202cd709d920f439dfa89762ffb58851CAS | 23771043PubMed |
[17] A. Kralj, M.-T. Nguyen, N. Tschammer, N. Ocampo, Q. Gesiotto, M. R. Heinrich, O. Phanstiel, J. Med. Chem. 2013, 56, 5019.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFWrtrw%3D&md5=42d230adddbd82c1bc6cbe39a71b1371CAS | 23768434PubMed |
[18] T. Ozturk, A. S. Klymchenko, A. Capan, S. Oncul, S. Cikrikci, S. Taskiran, B. Tasan, F. B. Kaynak, S. Ozbey, A. P. Demchenko, Tetrahedron 2007, 63, 10290.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVahs7o%3D&md5=3106a6e7a9e0f934b862c1f6bc6b8accCAS |
[19] V. V. Shynkar, A. S. Klymchenko, C. Kunzelmann, G. Duportail, C. D. Muller, A. P. Demchenko, J.-M. Freyssinet, Y. Mély, J. Am. Chem. Soc. 2007, 129, 2187.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOms7k%3D&md5=eeafdcc2a63de92aedb16711f45a7bebCAS | 17256940PubMed |
[20] Y. Kimura, M. Fukuda, K. Suda, M. Terazima, J. Phys. Chem. B 2010, 114, 11847.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrsL7L&md5=be48205a02a9744a383254e5f7a55478CAS | 20731404PubMed |
[21] O. M. Zamotaiev, V. Y. Postupalenko, V. V. Shvadchak, V. G. Pivovarenko, A. S. Klymchenko, Y. Mély, Bioconjugate Chem. 2011, 22, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2jt7%2FP&md5=1e880644eae4c7322f6e70552918e81eCAS |
[22] Z. Darwich, O. A. Kucherak, R. Kreder, L. Richert, R. Vauchelles, Y. Mély, A. S. Klymchenko, Methods Appl. Fluoresc. 2013, 1, 025002.
| Crossref | GoogleScholarGoogle Scholar |
[23] B. Gerard, G. Jones, J. A. Porco, J. Am. Chem. Soc. 2004, 126, 13620.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVShsr8%3D&md5=870f0204a60b13a7d034e82bc5ddcfe9CAS | 15493911PubMed |
[24] B. Gerard, R. Cencic, J. Pelletier, J. A. Porco, Angew. Chem., Int. Ed. 2007, 46, 7831.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1alsLrF&md5=bbc1ed36a7ce23430e90f5113eacd87eCAS |
[25] S. P. Roche, R. Cencic, J. Pelletier, J. A. Porco, Angew. Chem., Int. Ed. 2010, 49, 6533.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFamtbbO&md5=d3f57898f06b03418f9aa03a570abb33CAS |
[26] C. M. Rodrigo, R. Cencic, S. P. Roche, J. Pelletier, J. A. Porco, J. Med. Chem. 2012, 55, 558.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGmt7fN&md5=b17762db7468a4e343b3d8e9da3ddfc7CAS | 22128783PubMed |
[27] N. J. Lajkiewicz, S. P. Roche, B. Gerard, J. A. Porco, J. Am. Chem. Soc. 2012, 134, 13108.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGhsrfF&md5=a0bce47756e01e9fb78a347356b55236CAS | 22804454PubMed |
[28] J. Algar, J. P. Flynn, Proc. R. Ir. Acad., Sect. B 1934, B42, 1.
| 1:CAS:528:DyaA2MXhtFOj&md5=0da7c79ea962b32bda64a78a316dcb44CAS |
[29] T. Oyamada, Bull. Chem. Soc. Jpn. 1935, 10, 182.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2MXjvFentg%3D%3D&md5=def7d458c5ecd0187dc71dc044fd5f6eCAS |
[30] M. Bennett, A. J. Burke, W. I. O’Sullivan, Tetrahedron 1996, 52, 7163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtV2qu7o%3D&md5=8d199bb0ec63f72a958d2552ad6cf5e0CAS |
[31] F. Gao, K. F. Johnson, J. B. Schlenoff, J. Chem. Soc., Perkin Trans. 1 1996, 269.
| Crossref | GoogleScholarGoogle Scholar |
[32] S. Bhattacharyya, K. Hatua, RSC Adv. 2014, 4, 18702.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslymtrw%3D&md5=c52458fdacd44a07b49212b9f0898a55CAS |
[33] I. E. Serdiuk, A. D. Roshal, J. Blażejowski, Chem. Heterocycl. Compd. (N. Y., NY, U. S.) 2014, 50, 396.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFWlsLg%3D&md5=6e235a784e755b88631fdcc7edd43522CAS |
[34] C. Limberakis, in Name Reactions in Heterocyclic Chemistry (Ed. J. J. Li) 2005, Ch. 10, pp. 496–503 (Wiley: Hoboken, NJ).
[35] W. Adam, D. Golsch, L. Hadjiarapoglou, T. Patonay, J. Org. Chem. 1991, 56, 7292.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsl2ltrw%3D&md5=c3defbf2cb0d2864e4722a4442f55cecCAS |
[36] A. M. B. S. R. C. S. Costa, F. M. Dean, M. A. Jones, R. S. Varma, J. Chem. Soc., Perkin Trans. 1 1985, 799.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlt1ehs74%3D&md5=e07160ace040fb422b841bf7153d6faeCAS |
[37] M. El Sous, M. L. Khoo, G. Holloway, D. Owen, P. J. Scammells, M. A. Rizzacasa, Angew. Chem., Int. Ed. Engl. 2007, 46, 7835.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1alsLvM&md5=7e5d854fd32e1a37e49ad179517c06e9CAS |
[38] G. A. Kraus, V. Gupta, A. Kempema, Synlett 2012, 385.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFansbg%3D&md5=5042529a73b2d9be1576ba34fcd396c7CAS |
[39] A. C. Jain, S. M. Gupta, A. Sharma, Bull. Chem. Soc. Jpn. 1983, 56, 1267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktlyhtLw%3D&md5=f50142e83292d85b600c860581b936f1CAS |
[40] J. R. Dharia, K. F. Johnson, J. B. Schlenoff, Macromolecules 1994, 27, 5167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlCru70%3D&md5=bfabbb2b152eecce49d12a45865d8598CAS |
[41] S. Gunduz, A. C. Goren, T. Ozturk, Org. Lett. 2012, 14, 1576.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsVChu78%3D&md5=8dc8fd3077afea7cda5447c995515fd6CAS | 22400900PubMed |
[42] B. C. Hawkins, L. M. Lindqvist, D. Nhu, P. P. Sharp, D. Segal, A. K. Powell, M. Campbell, E. Ryan, J. M. Chambers, J. M. White, M. A. Rizzacasa, G. Lessene, D. C. Huang, C. J. Burns, ChemMedChem 2014, 9, 1556.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltVSrtbs%3D&md5=9a362e38f9a53724ec20cd9d94dc047aCAS | 24677741PubMed |
[43] Z. Li, G. Ngojeh, P. DeWitt, Z. Zheng, M. Chen, B. Lainhart, V. Li, P. Felpo, Tetrahedron Lett. 2008, 49, 7243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOhtrjN&md5=1351c98232fe05c48b0689692aec730dCAS |
[44] T. Werner, Adv. Synth. Catal. 2009, 351, 1469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptV2hsbo%3D&md5=775509db99e8fdac3bd51cb1b90328f4CAS |
[45] K. Sato, M. Aoki, J. Takagi, R. Noyori, J. Am. Chem. Soc. 1997, 119, 12386.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVKj&md5=00a8bc299ba3670028b370b3611fdcd0CAS |
[46] K. N. Mewett, S. P. Fernandez, A. K. Pasricha, A. Pong, S. O. Devenish, D. E. Hibbs, M. Chebib, G. A. R. Johnston, J. R. Hanrahan, Bioorg. Med. Chem. 2009, 17, 7156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ais7jM&md5=74b10b2c18a721ef7df3114fdf39863dCAS | 19783443PubMed |
[47] J. Alvim, R. P. Severino, E. F. Marques, A. M. Martinelli, P. C. Vieira, J. B. Fernandes, M. F. G. F. da Silva, A. G. Corrêa, J. Comb. Chem. 2010, 12, 687.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFSqt7o%3D&md5=39e8d74ff23a0618e32265c4eebeff63CAS | 20578711PubMed |
[48] Z. Li, G. Ngojeh, P. DeWitt, Z. Zheng, M. Chen, B. Lainhart, V. Li, P. Felpo, Tetrahedron Lett. 2008, 49, 7243.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOhtrjN&md5=1351c98232fe05c48b0689692aec730dCAS |