Synthesis of Dichotomin A: Use of a Penicillamine-Derived Pseudoproline to Furnish Native Valine Residues
Michelle S. Y. Wong A , Deni Taleski A and Katrina A. Jolliffe A BA School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
B Corresponding author. Email: kate.jolliffe@sydney.edu.au
Australian Journal of Chemistry 68(4) 627-634 https://doi.org/10.1071/CH14569
Submitted: 15 September 2014 Accepted: 22 October 2014 Published: 22 December 2014
Abstract
The total synthesis of cyclic hexapeptide dichotomin A from linear peptide precursors containing penicillamine-derived pseudoproline residues is reported. The incorporation of a pseudoproline residue led to a faster reaction and higher head-to-tail cyclization yields in comparison to linear precursors containing the native valine residue. However, deprotection of the pseudoproline resulted in significant amounts of a by-product in which a threonine side chain had undergone dehydration, resulting in a low overall yield of the natural product.
References
[1] J. S. Davies, J. Pept. Sci. 2003, 9, 471.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Wjsbo%3D&md5=bc0efaf1a6f707a02c701df7ca6ecd2fCAS | 12952390PubMed |
[2] (a) For reviews see: C. J. White, A. K. Yudin, Nat. Chem. 2011, 3, 509.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFWjtrc%3D&md5=64fd206b05ee8435f431c9db8878e7e6CAS | 21697871PubMed |
(b) P. Li, P. P. Roller, J. Xu, Curr. Org. Chem. 2002, 6, 411.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. Li, P. P. Roller, Curr. Top. Med. Chem. 2002, 2, 325.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. N. Lambert, J. P. Mitchell, K. D. Roberts, J. Chem. Soc., Perkin Trans. 1 2001, 471.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) D. S. Skropeta, K. A. Jolliffe, P. J. Turner, J. Org. Chem. 2004, 69, 8804.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1Ogu7Y%3D&md5=db5301ce31f8df07be1865834359136bCAS |
(b) K. A. Fairweather, N. Sayyadi, I. J. Luck, J. K. Clegg, K. A. Jolliffe, Org. Lett. 2010, 12, 3136.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. Ruckle, P. de Lavallaz, M. Keller, P. Dumy, M. Mutter, Tetrahedron 1999, 55, 11281.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. M. Postma, F. Albericio, Org. Lett. 2014, 16, 1772.
| Crossref | GoogleScholarGoogle Scholar |
(e) N. Sayyadi, D. Skropeta, K. A. Jolliffe, Org. Lett. 2005, 7, 5497.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. S. Y. Wong, K. A. Jolliffe, Aust. J. Chem. 2010, 63, 797.
| Crossref | GoogleScholarGoogle Scholar |
(g) N. Sayyadi, D. Taleski, S. Leesch, K. A. Jolliffe, Tetrahedron 2014, 70, 7700.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) T. Wöhr, F. Wahl, A. Hefzi, B. Rohwedder, T. Sato, X. Sun, M. Mutter, J. Am. Chem. Soc. 1996, 118, 9218.
| Crossref | GoogleScholarGoogle Scholar |
(b) P. Dumy, M. Keller, D. E. Ryan, B. Rohwedder, T. Wöhr, M. Mutter, J. Am. Chem. Soc. 1997, 119, 918.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Keller, C. Sager, P. Dumy, M. Schutkowski, G. S. Fischer, M. Mutter, J. Am. Chem. Soc. 1998, 120, 2714.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) For reviews see: C. T. C. Wong, C. L. Tung, X. Li, Mol. BioSyst. 2013, 9, 826.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVOls7c%3D&md5=9f45af040f26b980b499d9b42a4472ddCAS |
(b) L. R. Malins, N. J. Mitchell, R. J. Payne, J. Pept. Sci. 2014, 20, 64.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Rohde, O. Seitz, Biopolymers 2010, 94, 551.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. E. Dawson, Isr. J. Chem. 2011, 51, 862.
| Crossref | GoogleScholarGoogle Scholar |
[6] H. Morita, T. Kayashita, A. Shishido, K. Takeya, H. Itokawa, M. Shiro, A. Dichotomin, Bioorg. Med. Chem. Lett. 1995, 5, 2353.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovVOhsbg%3D&md5=d34ad50cf6d6709746af19e6ea8d9324CAS |
[7] J. W. Skiles, J. T. Suh, B. E. Williams, P. R. Menard, J. N. Barton, B. Love, H. Jones, E. S. Neiss, A. Schwab, W. S. Mann, A. Khandwala, P. S. Wolf, I. Weinryb, J. Med. Chem. 1986, 29, 784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xit1Crtbs%3D&md5=870d88f029ed21a0de75adf260f8d09eCAS | 3009814PubMed |
[8] C. Kaduk, H. Wenschuh, M. Betermann, K. Forner, L. A. Carpino, M. Beinert, Lett. Pept. Sci. 1996, 2, 285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xos1ensA%3D%3D&md5=a3548afebf522068404c2167169aa06cCAS |
[9] See p. 117 in: K. Wüthrich, NMR of Proteins and Nucleic Acids 1986 (John Wiley & Sons: New York, NY).
[10] J. K. Clegg, J. R. Cochrane, N. Sayyadi, D. Skropeta, P. Turner, K. A. Jolliffe, Aust. J. Chem. 2009, 62, 711.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotl2murw%3D&md5=0edd2c0b9c8fb03ce0653782f0bfa856CAS |
[11] S. A. Raw, Tetrahedron Lett. 2009, 50, 946.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsVWruw%3D%3D&md5=16e9f31ce5d1a1ed842c06e8a4a366a2CAS |