Consequences of Subtle Chiral Effects: From ‘Majority-Rules’ to ‘Minority-Rules’
Patrick J. M. Stals A B C , Müge Artar A B , Pim Vendrig A , Anja R. A. Palmans A B and E. W. Meijer A B DA Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, PO Box 513, NL 5600 MB Eindhoven, The Netherlands.
B Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, NL 5600 MB Eindhoven, The Netherlands.
C DSM Coating Resins, Sluisweg 12, 5145 PE Waalwijk, The Netherlands.
D Corresponding author. Email: e.w.meijer@tue.nl
Australian Journal of Chemistry 68(4) 622-626 https://doi.org/10.1071/CH14596
Submitted: 29 September 2014 Accepted: 22 October 2014 Published: 22 December 2014
Abstract
Mixing experiments were conducted on dilute solutions of asymmetrically substituted benzene-1,3,5-tricarboxamides (BTAs) with stereogenic methyl groups ranging from the α- to the δ-position with respect to the amide in one of the three side groups. While normally the majority compound determines the helical sense preference of the formed supramolecular polymers, we find here that several combinations show a helical preference governed by the minority compound. BTAs with the methyl substituent at the α- and γ-position overrule the helical preference of BTAs with the methyl substituent at the β- and δ-position. This new effect is referred to as a ‘minority-rules’ system.
References
[1] J.W. Cornforth, Asymmetry and Enzyme Action, Nobel Lecture, 12 December 1975.[2] (a) A. R. A. Palmans, E. W. Meijer, Angew. Chem., Int. Ed. 2007, 46, 8948.and references cited therein.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCju7rM&md5=864e0778ac76f1fb75ccdfd02b1347c2CAS |
(b) A. Lohr, F. Wuerthner, Angew. Chem., Int. Ed. 2008, 47, 1232.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. E. Kaiser, V. Stepanenko, F. Wuerthner, J. Am. Chem. Soc. 2009, 131, 6719.
| Crossref | GoogleScholarGoogle Scholar |
(d) F. Helmich, C. C. Lee, A. P. H. J. Schenning, E. W. Meijer, J. Am. Chem. Soc. 2010, 132, 16753.
| Crossref | GoogleScholarGoogle Scholar |
(e) H. Cao, X. Zhu, M. Liu, Angew. Chem., Int. Ed. 2013, 52, 4122.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. Peterca, M. R. Imam, C.-H. Ahn, V. S. K. Balagurusamy, D. A. Wilson, B. M. Rosen, V. Percec, J. Am. Chem. Soc. 2011, 133, 2311.
| Crossref | GoogleScholarGoogle Scholar |
(g) F. Garcia, P. M. Viruela, E. Matesanz, E. Orti, L. Sanchez, Chem. – Eur. J. 2011, 17, 7755.
| Crossref | GoogleScholarGoogle Scholar |
(h) T. Seki, A. Asano, S. Seki, Y. Kikkawa, H. Murayama, T. Karatsu, A. Kitamura, S. Yagai, Chem. – Eur. J. 2011, 17, 3598.
| Crossref | GoogleScholarGoogle Scholar |
(i) C. Kulkarni, R. Munirathinam, S. J. George, Chem. – Eur. J. 2013, 19, 11270.
| Crossref | GoogleScholarGoogle Scholar |
(j) B. Nie, T.-G. Zhan, T.-Y. Zhou, Z.-E. Xiao, G.-F. Jiang, X. Zhao, Chem. – Asian J. 2014, 9, 754.
| Crossref | GoogleScholarGoogle Scholar |
(k) J. Kang, D. Miyajima, Y. Itoh, T. Mori, H. Tanaka, M. Yamauchi, Y. Inoue, S. Harada, T. Aida, J. Am. Chem. Soc. 2014, 136, 10640.
| Crossref | GoogleScholarGoogle Scholar |
(l) R. Fasel, M. Parschau, K.-H. Ernst, Nature 2006, 439, 449.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) M. M. Green, M. P. Reidy, R. D. Johnson, G. Darling, D. J. O’Leary, G. Wilson, J. Am. Chem. Soc. 1989, 111, 6452.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. M. Green, B. A. Garetz, B. Munoz, H. Chang, S. Hoke, R. G. Cooks, J. Am. Chem. Soc. 1995, 117, 4181.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Tang, M. M. Green, K. S. Cheon, J. V. Selinger, B. A. Garetz, J. Am. Chem. Soc. 2003, 125, 7313.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) M. M. Green, C. Khatri, N. C. Peterson, J. Am. Chem. Soc. 1993, 115, 4941.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkslentLc%3D&md5=f6c2da375282ef395ce6a6584b27f6f8CAS |
(b) A. R. A. Palmans, J. A. J. M. Vekemans, E. E. Havinga, E. W. Meijer, Angew. Chem., Int. Ed. Engl. 1997, 36, 2648.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Nakashima, J. R. Koe, K. Torimitsu, M. Fujiki, J. Am. Chem. Soc. 2001, 123, 4847.
| Crossref | GoogleScholarGoogle Scholar |
(d) B. Isare, M. Linares, L. Zargarian, S. Fermandjian, M. Miura, S. Motohashi, N. Vanthuyne, R. Lazzaroni, L. Bouteiller, Chem. – Eur. J. 2010, 16, 173.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. J. George, Z. Tomovic, A. P. H. J. Schenning, E. W. Meijer, Chem. Commun. 2011, 47, 3451.
| Crossref | GoogleScholarGoogle Scholar |
(f) I. Destoop, H. Xu, C. Oliveras-Gonzales, E. Ghijsens, D. B. Amabilino, S. De Feyter, Chem. Commun. 2013, 49, 7477.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) M. M. J. Smulders, P. J. M. Stals, T. Mes, T. F. E. Paffen, A. P. H. J. Schenning, A. R. A. Palmans, E. W. Meijer, J. Am. Chem. Soc. 2010, 132, 620.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKgtbfE&md5=7f7c4ab68ff2efa983af8277a05af4abCAS |
(b) M. M. J. Smulders, I. A. W. Filot, J. M. A. Leenders, P. van der Schoot, A. R. A. Palmans, A. P. H. J. Schenning, E. W. Meijer, J. Am. Chem. Soc. 2010, 132, 611.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Cantekin, H. M. M. ten Eikelder, A. J. Markvoort, M. A. J. Veld, P. A. Korevaar, M. M. Green, A. R. A. Palmans, E. W. Meijer, Angew. Chem., Int. Ed. 2012, 51, 6426.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. J. M. Stals, P. A. Korevaar, M. A. J. Gillissen, T. F. A. de Greef, C. F. C. Fitié, R. P. Sijbesma, A. R. A. Palmans, E. W. Meijer, Angew. Chem., Int. Ed. 2012, 51, 11297.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. A. J. Veld, D. Haveman, A. R. A. Palmans, E. W. Meijer, Soft Matter 2011, 7, 524.
| Crossref | GoogleScholarGoogle Scholar |
(f) P. J. M. Stals, J. C. Everts, R. de Bruijn, I. A. W. Filot, M. M. J. Smulders, R. Martin-Rapun, E. A. Pidko, T. F. A. de Greef, A. R. A. Palmans, E. W. Meijer, Chem. – Eur. J. 2010, 16, 810.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) M. M. J. Smulders, A. P. H. J. Schenning, E. W. Meijer, J. Am. Chem. Soc. 2008, 130, 606.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVehur7E&md5=4af1b285f05115786a92f21d10431123CAS |
(b) S. Cantekin, T. F. A. de Greef, A. R. A. Palmans, Chem. Soc. Rev. 2012, 41, 6125.
| Crossref | GoogleScholarGoogle Scholar |
[7] G. Gottarelli, S. Lena, S. Masiero, S. Pieraccini, G. P. Spada, Chirality 2008, 20, 471.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis12hu78%3D&md5=0c1ad6c6b62aa59967bb00f06f5ecbaeCAS | 17918751PubMed |
[8] (a) P. J. M. Stals, M. M. J. Smulders, R. Martín-Rapún, A. R. A. Palmans, E. W. Meijer, Chem. – Eur. J. 2009, 15, 2071.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVaiur0%3D&md5=af30ed6c12f0de14fb22c647517e4e2aCAS |
(b) Y. Nakano, T. Hirose, P. J. M. Stals, E. W. Meijer, A. R. A. Palmans, Chem. Sci. 2012, 3, 148.
| Crossref | GoogleScholarGoogle Scholar |
[9] M. M. J. Smulders, T. Buffeteau, D. Cavagnat, M. Wolffs, A. P. H. J. Schenning, E. W. Meijer, Chirality 2008, 20, 1016.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKgsLnL&md5=0d49746b27aaf08aa7d145954cb5c6cfCAS |
[10] For mixing (S)-β-BTA with (R)-δ-BTA, the following formula was used to calculate the ce: (Sβ – (Rβ + Rδ))/(Sβ + Rβ + Rδ), in which Sβ, Rβ, and Rδ are the respective moles of the specified BTA in the titration point.
[11] D. B. Amabilino, E. Ramos, J.-L. Serrano, T. Sierra, J. Veciana, J. Am. Chem. Soc. 1998, 120, 9126.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls1ajs7k%3D&md5=3626dfdbd46b79ccbec4cbb2205d1642CAS |
[12] J. Tabei, M. Shiotsuki, F. Sanda, T. Masuda, Macromolecules 2005, 38, 5860.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFCgt78%3D&md5=c83978814fa6d3e4d49720802bb6395eCAS |
[13] (a) J. Clayden, A. Lund, L. Vallverdu, M. Helliwell, Nature 2004, 431, 966.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslSltrs%3D&md5=c7d5414c8f14797de276ebc0c2c4b66eCAS | 15496918PubMed |
(b) J. Clayden, Chem. Soc. Rev. 2009, 38, 817.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Clayden, N. Vassiliou, Org. Biomol. Chem. 2006, 4, 2667.
| Crossref | GoogleScholarGoogle Scholar |