Increasing Rutile Phase Amount in Chromium-Doped Titania by Simple Stirring Approach for Photodegradation of Methylene Blue under Visible Light
Pei Wen Koh A , Leny Yuliati B , Hendrik O. Lintang B and Siew Ling Lee B CA Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
B Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
C Corresponding author. Email: sllee@ibnusina.utm.my
Australian Journal of Chemistry 68(7) 1129-1135 https://doi.org/10.1071/CH14565
Submitted: 14 September 2014 Accepted: 7 December 2014 Published: 5 February 2015
Abstract
The amount of rutile phase in chromium-doped titania photocatalyst was controlled by varying stirring time (0.5–2.0 h) at room temperature during a sol–gel synthesis process. The percentage of rutile phase increased from 15.1 % to 28.6 % when stirring time was prolonged from 0.5 to 1.5 h. Further increases in the stirring time had negligible effect on the rutile phase amount. As evidenced by analyses using diffuse reflectance ultraviolet–visible spectroscopy and X-ray photoelectron spectroscopy, a sufficient stirring time was important for more substitution of Cr3+ for Ti4+ in the lattice, resulting in anatase-to-rutile phase transformation. The formation of more rutile phase in Cr-doped TiO2 not only reduced the band gap energy, but also induced surface defects that retarded electron–hole recombination. It has been demonstrated that the Cr-doped TiO2 prepared with a stirring time of 1.5 h possessed the lowest band gap energy of 1.89 eV, and hence it achieved the highest photodegradation of methylene blue under visible light irradiation.
References
[1] K. Nakata, A. Fujishima, J. Photochem. Photobiol. C 2012, 13, 169.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFWqt78%3D&md5=89a9aeb8bbe20e035b8afa249cc4869aCAS |
[2] A. Sclafani, J. M. Herrmann, J. Phys. Chem. 1996, 100, 13655.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktlGitbs%3D&md5=4a4360a4af244c0d39a5689b0dff9326CAS |
[3] R. G. Nair, S. Paul, S. K. Samdarshi, Sol. Energy Mater. Sol. Cells 2011, 95, 1901.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFals7g%3D&md5=00486415ec6313d3342393b0fa482365CAS |
[4] K. V. Baiju, A. Zachariah, S. Shukla, S. Biju, M. L. P. Reddy, K. G. K. Warrier, Catal. Lett. 2009, 130, 130.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKmsr%2FP&md5=a8c5819c37b62c9080a49b58490fb603CAS |
[5] R. I. Bickley, T. Gonzalez-Carreno, J. S. Lee, L. Palmisano, R. J. D. Tilleyd, J. Solid State Chem. 1991, 92, 178.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktlyns70%3D&md5=51a8cea470352a2db7019f9bcd965c08CAS |
[6] D. C. Hurum, A. G. Agrios, K. A. Gray, J. Phys. Chem. B 2003, 107, 4545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVWnsrg%3D&md5=34481e6e66f253bcb0faee40a65de228CAS |
[7] N. Wetchakun, S. Phanichphant, Curr. Appl. Phys. 2008, 8, 343.
| Crossref | GoogleScholarGoogle Scholar |
[8] W. Zhang, S. Chen, S. Yu, Y. Yin, J. Cryst. Growth 2007, 308, 122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFejsrfP&md5=4d981c151c5db77c1ebc062d57fb6991CAS |
[9] H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 1995, 7, 663.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvVWlurc%3D&md5=a89ab563651d5e3a44cb060f70f82482CAS |
[10] Y. Zhang, A. Weidenkaff, A. Reller, Mater. Lett. 2002, 54, 375.
| 1:CAS:528:DC%2BD38XjsFOjtr8%3D&md5=0f914e8d9f9e67705e0c131f16af6481CAS |
[11] Y. Li, T. J. White, S. H. Lim, J. Solid State Chem. 2004, 177, 1372.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVeitrw%3D&md5=25dbe0b9361feeea7186682d75799eaeCAS |
[12] S. A. Borkar, S. R. Dharwadkar, J. Therm. Anal. Calorim. 2004, 78, 761.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGmt7nP&md5=27115ae88fbd77829f3721610cae4726CAS |
[13] R. D. Shannon, J. A. Pask, J. Am. Ceram. Soc. 1965, 48, 391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XlsVw%3D&md5=dd4fd27cc2eb48ca26a13de8cca7aad1CAS |
[14] M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrnee, K. O’Sheaf, M. H. Entezari, D. D. Dionysiou, Appl. Catal. B 2012, 125, 331.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCmt77I&md5=029add59724793b7ffca868da104156eCAS |
[15] Y. S. Jung, K. H. Kim, T. Y. Jang, Y. Tak, S. H. Baeck, Curr. Appl. Phys. 2011, 11, 358.
| Crossref | GoogleScholarGoogle Scholar |
[16] K. Wilke, H. D. Breuer, J. Photochem. Photobiol. Chem. 1999, 121, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXovFaqtA%3D%3D&md5=434ba8d08960eb42b7f411207e8d2e8fCAS |
[17] H. Hamdan, M. N. M. Muhid, S. L. Lee, Y. Y. Tan, Int. J. Chem. React. Eng. 2009, 7, 1.
| Crossref | GoogleScholarGoogle Scholar |
[18] P. W. Koh, L. Yuliati, S. L. Lee, J. Teknologi 2014, 69, 45.
[19] R. A. Spurr, H. Myers, Anal. Chem. 1957, 29, 760.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXmtFKhsg%3D%3D&md5=0087e0af8c48ae9774d1393ad09f3575CAS |
[20] J. Choi, H. Park, M. R. Hoffmann, J. Phys. Chem. C 2010, 114, 783.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyqu7vE&md5=a835fd9f369971c8345cc863903b481eCAS |
[21] D. A. H. Hanaor, M. H. N. Assadi, S. Li, A. Yu, C. C. Sorrell, Comput. Mech. 2012, 50, 185.
| Crossref | GoogleScholarGoogle Scholar |
[22] R. Arroyo, G. Cordoba, J. Padilla, V. H. Lara, Mater. Lett. 2002, 54, 397.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFOjtro%3D&md5=ae6669a19c7c4a9c6ded95d9f14b60f1CAS |
[23] Q. Gao, X. Wu, Y. Fan, Dyes Pigm. 2012, 95, 96.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlSnu74%3D&md5=17f54df491bf79cb4ad4d64656c1cfd2CAS |
[24] X. Li, Z. Guo, T. He, Phys. Chem. Chem. Phys. 2013, 15, 20037.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslartrfE&md5=6fb61b2463f4eb7e5c0fc80b7b4a6ebcCAS | 24154550PubMed |
[25] R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 751.
| Crossref | GoogleScholarGoogle Scholar |
[26] E. Astorino, J. B. Peri, R. J. Willey, G. Bisca, J. Catal. 1995, 157, 482.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSkt77M&md5=d9ef6d5accc94b214e0df823a6f1e242CAS |
[27] D. Dvoranová, V. Brezová, M. Mazúra, M. A. Malati, Appl. Catal., B 2002, 37, 91.
| Crossref | GoogleScholarGoogle Scholar |
[28] K. B. Jaimy, S. Ghosh, S. Sankar, K. G. K. Warrier, Mater. Res. Bull. 2011, 46, 914.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVOis78%3D&md5=87cdbd6453a1f5202d7f5cc205a8ce0eCAS |
[29] Y. Cong, J. Zhang, F. Chen, M. Anpo, J. Phys. Chem. C 2007, 111, 6876.
[30] Handbook of Heterogeneous Catalysis (Eds G. Ertl, H. Knozinger, F. Schuth, J. Weitkamp) 2008 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).
[31] J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Huang, L. Zhang, Appl. Catal., B 2006, 62, 329.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFKhtg%3D%3D&md5=18a7bfa3ef83d81a0abb2649bcb5a94dCAS |
[32] L. Yu, S. Yuan, L. Shi, Y. Zhao, J. Fang, Microporous Mesoporous Mater. 2010, 134, 108.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosl2gtLk%3D&md5=f2af6ae3d8cf06f21daf29d550aec138CAS |
[33] X. Yan, T. Ohno, K. Nishijima, R. Abe, B. Ohtani, Chem. Phys. Lett. 2006, 429, 606.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvV2rsLs%3D&md5=4809c006cbb0eae9b0167a80a7ea6b30CAS |
[34] J. Matos, M. Hofman, R. Pietrzak, Carbon 2013, 54, 460.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVSgsQ%3D%3D&md5=2b50de2b82d94d866be71ebf537ea26cCAS |
[35] R. López, R. Gómez, S. Oros-Ruiz, Catal. Today 2011, 166, 159.
| Crossref | GoogleScholarGoogle Scholar |
[36] P. Bouras, E. Stathatos, P. Lianos, Appl. Catal., B 2007, 73, 51.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1OhsL8%3D&md5=5fff01d370561fa82738d46b7fc2d42bCAS |
[37] A. Di Paola, G. Marcì, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda, B. Ohtani, J. Phys. Chem. B 2002, 106, 637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlChtbc%3D&md5=7ab913aa1f181c79ed3a9674f67258b0CAS |