Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Water-Soluble Poly(ϵ-caprolactone)-Paclitaxel Prodrugs Toward an Efficient Drug Delivery System

Ji Wang A , Huanjiao Sun A , Deshan Li A , Jie Yuan A , Xuefei Zhang A B C and Haoyu Tang A B C
+ Author Affiliations
- Author Affiliations

A College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China.

B Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, and Universities of Hunan Province, Xiangtan 411105, China.

C Corresponding authors. Email: zxf7515@163.com; htang@xtu.edu.cn

Australian Journal of Chemistry 68(7) 1136-1143 https://doi.org/10.1071/CH14517
Submitted: 23 August 2014  Accepted: 8 December 2014   Published: 18 February 2015

Abstract

In this paper, poly(ϵ-caprolactone)-graft-carboxylic acid (P(α-C2CL)) was prepared via a thio-bromo click reaction between mercaptosuccinic acid and poly(α-bromo-ϵ-caprolactone). It is readily soluble in aqueous solutions (pH 5.5–9.8) due to the presence of carboxylic groups in each repeating unit. A series of water-soluble P(α-C2CL)-paclitaxel prodrugs with high drug contents (up to 41.4 wt-%) was prepared by esterification. Meanwhile, methyl tetrazolium (MTT) assays showed that P(α-C2CL)-paclitaxel prodrugs exhibited a high antitumour effect on A549 and MCF-7 cells. These prodrugs have appeared as a highly versatile and potent platform for cancer therapy.


References

[1]  G. Pasut, F. M. Veronese, Prog. Polym. Sci. 2007, 32, 933.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFeksLc%3D&md5=c2630f3bd50ff740e4f9f4d8138a5866CAS |

[2]  R. Duncan, Nat. Rev. Cancer 2006, 6, 688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVOmsLY%3D&md5=ee65dd1e971b93a1dca481e60cffb63aCAS | 16900224PubMed |

[3]  H. Maeda, G. Y. Bharate, J. Daruwalla, Eur. J. Pharm. Biopharm. 2009, 71, 409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFWgt78%3D&md5=721e523ad5ac74bf45b6064f6548edb7CAS | 19070661PubMed |

[4]  Y. H. Bae, H. Yin, J. Control. Release 2008, 131, 2.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFensLfL&md5=3e1c5b2c41f34fe57cccee442c5cd8beCAS | 18625275PubMed |

[5]  A. Rosler, G. W. M. Vandermeulen, H. A. Klok, Adv. Drug Deliv. Rev. 2001, 53, 95.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVeqtrY%3D&md5=e91bb0997b792996a733bcedb072b40dCAS | 11733119PubMed |

[6]  R. Duncan, Nat. Rev. Drug Discov. 2003, 2, 347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslamtb0%3D&md5=26a1d53b5330f8c294f2ad1e51231583CAS | 12750738PubMed |

[7]  C. Li, S. Wallace, Adv. Drug Deliv. Rev. 2008, 60, 886.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslagu7g%3D&md5=533882074c417a93b1246da80d474e30CAS | 18374448PubMed |

[8]  J. Khandare, T. Minko, Prog. Polym. Sci. 2006, 31, 359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFamtbY%3D&md5=1c0568d5899f981219d94bf3285692b7CAS |

[9]  K. Hoste, K. De Winne, E. Schacht, Int. J. Pharm. 2004, 277, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFOitrw%3D&md5=18d06bd5cb3f4bb5db268b96475c6db0CAS | 15158975PubMed |

[10]  J. Kopeček, P. Kopečková, T. Minko, Z.-R. Lu, Eur. J. Pharm. Biopharm. 2000, 50, 61.
         | Crossref | GoogleScholarGoogle Scholar | 10840193PubMed |

[11]  J. Callahan, P. Kopecková, J. Kopecek, Biomacromolecules 2009, 10, 1704.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtF2qt7o%3D&md5=9710cd24828b05e1296ee361ff6f3e73CAS | 21197960PubMed |

[12]  H. M. Deutsch, J. A. Glinski, M. Hernandez, R. D. Haugwitz, V. L. Narayanan, M. Suffness, L. H. Zalkow, J. Med. Chem. 1989, 32, 788.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhslenurY%3D&md5=8c45027559eeaf16e6d6cacb508118b6CAS | 2564894PubMed |

[13]  S. Parveen, S. K. Sahoo, J. Drug Target. 2008, 16, 108.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVenu7o%3D&md5=edc04475f3c5d23829050b56d2675c55CAS | 18274932PubMed |

[14]  Y. Shen, E. Jin, B. Zhang, C. J. Murphy, M. Sui, J. Zhao, J. Wang, J. Tang, M. Fan, E. Van Kirk, W. J. Murdoch, J. Am. Chem. Soc. 2010, 132, 4259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVyis7w%3D&md5=4a70f42fe11cae74262530a6466652adCAS | 20218672PubMed |

[15]  R. Tong, J. Cheng, Angew. Chem. 2008, 120, 4908.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) H. S. Yoo, K. H. Lee, J. E. Oh, T. G. Park, J. Control. Release 2000, 68, 419.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFGkur4%3D&md5=c2c47b28c1cef395c0c110cb1c8d3d98CAS | 10974396PubMed |
      (b) V. R. Caiolfa, M. Zamai, A. Fiorino, E. Frigerio, C. Pellizzoni, R. d’Argy, A. Ghiglieri, M. G. Castelli, M. Farao, E. Pesenti, M. Gigli, F. Angelucci, A. Suarato, J. Control. Release 2000, 65, 105.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. S. Lee, K. Na, Y. H. Bae, J. Control. Release 2005, 103, 405.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) O. M. Koo, I. Rubinstein, H. Onyuksel, Nanomedicine 2005, 1, 77.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  K. Kataoka, A. Harada, Y. Nagasaki, Adv. Drug Deliv. Rev. 2001, 47, 113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvVajs78%3D&md5=18076f8508fb0167b13e7aff22336152CAS | 11251249PubMed |

[18]  E. Fleige, M. A. Quadir, R. Haag, Adv. Drug Deliv. Rev. 2012, 64, 866.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1OqurY%3D&md5=77b46905af6ca08fe3322832bfcb8fe9CAS | 22349241PubMed |

[19]  V. P. Torchilin, Nat. Rev. Drug Discov. 2005, 4, 145.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1WlsA%3D%3D&md5=0ba662ace3b9c081a76c4d8ba4277343CAS | 15688077PubMed |

[20]  M. E. Davis, D. M. Shin, Nat. Rev. Drug Discov. 2008, 7, 771.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGgtL%2FJ&md5=314d817fe10315c44703ba3d07094981CAS | 18758474PubMed |

[21]  R. Cheng, F. Meng, C. Deng, H.-A. Klok, Z. Zhong, Biomaterials 2013, 34, 3647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXis1Shurk%3D&md5=66d277be3809e391b2cfd619c4891290CAS | 23415642PubMed |

[22]  F. Meng, Z. Zhong, J. Feijen, Biomacromolecules 2009, 10, 197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlartg%3D%3D&md5=428412d41b57dcae2dc94c85904ce91dCAS | 19123775PubMed |

[23]  K. Knop, R. Hoogenboom, D. Fischer, U. S. Schubert, Angew. Chem. Int. Ed. 2010, 49, 6288.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOqtLbN&md5=f420c2525f53c5dd91164e0263329be5CAS |

[24]  C. Li, S. Wallace, Adv. Drug Deliv. Rev. 2008, 60, 886.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslagu7g%3D&md5=533882074c417a93b1246da80d474e30CAS | 18374448PubMed |

[25]  B. Romberg, J. M. Metselaar, L. Baranyi, C. Snel, R. Bunger, W. Hennink, J. Szebeni, G. Storm, Int. J. Pharm. 2007, 331, 186.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFClsb0%3D&md5=fe79918ae5fc42fe74c5dcb2e811046cCAS | 17145145PubMed |

[26]  J. Pytela, V. Saudek, J. Drobnik, F. Rypáček, J. Control. Release 1989, 10, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkt1entg%3D%3D&md5=f04e982dc76dcbd238d775e3eaa5179dCAS |

[27]  G. L. Brode, J. V. Koleske, J. Macromol. Sci., Chem. 1972, 6, 1109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXosVyhtA%3D%3D&md5=cf42e40cf4e441573db1636f86fca87dCAS |

[28]  E. L. Prime, J. J. Cooper-White, G. G. Qiao, Aust. J. Chem. 2006, 59, 534.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlOnsb4%3D&md5=3fd2ee916bf9a00f1a3e495d8c216f9cCAS |

[29]  C. Allen, J. Han, Y. Yu, D. Maysinger, A. Eisenberg, J. Control. Release 2000, 63, 275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFSmu7o%3D&md5=0b2b66f826ff0cd873c2b6e9dad49c67CAS | 10601723PubMed |

[30]  V. R. Sinha, K. Bansal, R. Kaushik, R. Kumria, A. Trehan, Int. J. Pharm. 2004, 278, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFOit7c%3D&md5=2fc1c85586eea483b6ae6ae45c3d1653CAS | 15158945PubMed |

[31]  M. Liu, N. Vladimirov, J. M. J. Fréchet, Macromolecules 1999, 32, 6881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVSit78%3D&md5=f4679700c780e081d04bd773238a33f9CAS |

[32]  J. Yan, Y. Zhang, Y. Xiao, Y. Zhang, M. Lang, React. Funct. Polym. 2010, 70, 400.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslCgtb8%3D&md5=a53183fd76499ea3b045efddf7f943b5CAS |

[33]  M. Trollsas, V. Y. Lee, D. Mecerreyes, P. Löwenhielm, M. Möller, R. D. Miller, J. L. Hedrick, Macromolecules 2000, 33, 4619.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  G. Ma, D. Li, J. Wang, X. Zhang, H. Tang, Aust. J. Chem. 2013, 66, 1576.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVyqsLrM&md5=7dc71e8617091f6638636fdfc571b553CAS |

[35]  Y. Hu, Z. Jiang, R. Chen, W. Wu, X. Jiang, Biomacromolecules 2010, 11, 481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1emtw%3D%3D&md5=83308cf63b6cfece1a1fdb168e99c304CAS | 20073456PubMed |

[36]  S. Q. Zhang, Biomed. Sci., Eng. Technol. 2012, 24, 588.

[37]  R. Duncan, Nat. Rev. Cancer 2006, 6, 688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVOmsLY%3D&md5=ee65dd1e971b93a1dca481e60cffb63aCAS | 16900224PubMed |

[38]  Y. Gu, Y. Zhong, F. Meng, R. Cheng, C. Deng, Z. Zhong, Biomacromolecules 2013, 14, 2772.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFGktrw%3D&md5=f6e522a97482de84b235a857b622a7d6CAS | 23777504PubMed |