A Chemoenzymatic Route to the (+)-Form of the Amaryllidaceae Alkaloid Narseronine*
Shuxin Yang A , Martin G. Banwell A B , Anthony C. Willis A and Jas S. Ward AA Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia.
B Corresponding author. Email: martin.banwell@anu.edu.au
Australian Journal of Chemistry 68(2) 241-247 https://doi.org/10.1071/CH14520
Submitted: 26 August 2014 Accepted: 7 September 2014 Published: 3 November 2014
Abstract
The enzymatically derived and enantiopure cis-1,2-dihydrocatechol 1 has been converted, over 14 one-pot operations, into the (+)-form of the alkaloid narseronine (2). The present study, which complements earlier work that established a route from metabolite 1 to enantiomer (–)-2, involves an N-bromosuccinimide/tri-n-butyltin hydride-mediated cyclisation reaction to construct the unsaturated B-ring lactone of the target compound.
References
[1] (a) For key early studies in this area, see: D. T. Gibson, J. R. Koch, R. E. Kallio, Biochemistry 1968, 7, 2653.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXksVWgtLk%3D&md5=5234e28bcfebf173517ac3e6a12dc28cCAS | 4298226PubMed |
(b) D. T. Gibson, J. R. Koch, C. L. Schuld, R. E. Kallio, Biochemistry 1968, 7, 3795.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. T. Gibson, V. Subramanian, in Microbial Degradation of Organic Compounds (Ed. D. T. Gibson) 1984, pp. 181–252 (Marcel Dekker: New York, NY).
(d) G. J. Zylstra, D. T. Gibson, J. Biol. Chem. 1989, 264, 14940.
[2] (a) For recent reviews on the production and/or synthetic utility of cis-1,2-dihydrocatechols, see: T. Hudlicky, D. Gonzalez, D. T. Gibson, Aldrichim Acta 1999, 32, 35.
| 1:CAS:528:DyaK1MXmtlCmtLg%3D&md5=ba81bdeb50d78d12dcf2afaa49df2a01CAS |
(b) R. A. Johnson, Org. React. 2004, 63, 117.
(c) D. R. Boyd, T. D. H. Bugg, Org. Biomol. Chem. 2006, 4, 181.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. Hudlicky, J. W. Reed, Synlett 2009, 685.
| Crossref | GoogleScholarGoogle Scholar |
(e) T. Hudlicky, J. W. Reed, Chem. Soc. Rev. 2009, 38, 3117.
| Crossref | GoogleScholarGoogle Scholar |
(f) J. Duchek, D. R. Adams, T. Hudlicky, Chem. Rev. 2011, 111, 4223.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. G. Banwell, A. L. Lehmann, R. S. Menon, A. C. Willis, Pure Appl. Chem. 2011, 83, 411.
| Crossref | GoogleScholarGoogle Scholar |
(h) D. J.-Y. D. Bon, B. Lee, M. G. Banwell, I. A. Cade, Chim. Oggi 2012, 30, 22.
[3] For a useful point of entry into the literature on chemoenzymatic synthesis, see: H. Gröger, ChemCatChem 2011, 3, 239.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) The enantiomeric forms (including ent-1) of just a small fraction of the ~400 known cis-1,2-dihyrocatechols have been reported to date: D. R. Boyd, N. D. Sharma, S. A. Barr, H. Dalton, J. Chima, G. Whited, R. Seemayer, J. Am. Chem. Soc. 1994, 116, 1147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisVChsL0%3D&md5=39ee7562f40c09be9d87b2900fd5f030CAS |
(b) C. C. R. Allen, D. R. Boyd, H. Dalton, N. D. Sharma, I. Brannigan, N. A. Kerley, G. N. Sheldrake, S. C. Taylor, J. Chem. Soc., Chem. Commun. 1995, 117.
| Crossref | GoogleScholarGoogle Scholar |
[5] T. Hudlicky, J. D. Price, F. Rulin, T. Tsunoda, J. Am. Chem. Soc. 1990, 112, 9439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXisVCiuw%3D%3D&md5=e94f9b661791a6ea7a08b6b868ec8d6bCAS |
[6] (a) M. G. Banwell, C. Chun, A. J. Edwards, M. M. Vögtle, Aust. J. Chem. 2003, 56, 861.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsV2jtrk%3D&md5=e1c2fb0bece79719a6f54150f3390b8eCAS |
(b) M. G. Banwell, A. J. Edwards, G. J. Harfoot, K. A. Jolliffe, Tetrahedron 2004, 60, 535.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. E. Dietinger, M. G. Banwell, M. J. Garson, A. C. Willis, Tetrahedron 2010, 66, 5250.
| Crossref | GoogleScholarGoogle Scholar |
[7] N. B. Pigni, S. Berkov, A. Elamrani, M. Benaissa, F. Viladomat, C. Codina, J. Bastida, Molecules 2010, 15, 7083.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlelsbrO&md5=559cab77e87a1c2b78d7955691c009b3CAS | 20948496PubMed |
[8] B. D. Schwartz, M. G. Banwell, I. A. Cade, Tetrahedron Lett. 2011, 52, 4526.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1WgtrY%3D&md5=98ca10dd2012255d8faa1ba0f2759352CAS |
[9] (a) M. T. Jones, B. D. Schwartz, A. C. Willis, M. G. Banwell, Org. Lett. 2009, 11, 3506.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotl2hsbo%3D&md5=4d86be4d30e46f1108f4032d91b04a25CAS | 19591492PubMed |
(b) B. D. Schwartz, M. T. Jones, M. G. Banwell, I. A. Cade, Org. Lett. 2010, 12, 5210.
| Crossref | GoogleScholarGoogle Scholar |
[10] D. H. R. Barton, S. W. McCombie, J. Chem. Soc., Perkin Trans. 1 1975, 1574.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXls1CnsLk%3D&md5=c016082e4fc44d03143bf22a978f31b7CAS |
[11] (a) For recent applications of Raney-cobalt in the selective reduction of nitriles, see: S. H. Tan, M. G. Banwell, A. C. Willis, T. A. Reekie, Org. Lett. 2012, 14, 5621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFygtLbL&md5=5008fefa1eecfd129b2df20f25bf51abCAS | 23106356PubMed |
(b) T. A. Reekie, M. G. Banwell, A. C. Willis, J. Org. Chem. 2012, 77, 10773.
| Crossref | GoogleScholarGoogle Scholar |
[12] L. V. White, B. D. Schwartz, M. G. Banwell, A. C. Willis, J. Org. Chem. 2011, 76, 6250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVehs70%3D&md5=5bed62e3d95080de2197818dd7895cf2CAS | 21644519PubMed |
[13] M. G. Banwell, M. T. Jones, T. A. Reekie, B. D. Schwartz, S. H. Tan, L. V. White, Org. Biomol. Chem. 2014, 12, 7433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOnsrjE&md5=6fc0305dd262f931b7b820ac9740552eCAS | 24977663PubMed |
[14] A. L. Gemal, J. L. Luche, J. Am. Chem. Soc. 1981, 103, 5454.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXltlWksb8%3D&md5=29ee9ede48397ff595223accc03abc0fCAS |
[15] For a relevant recent paper dealing with arene hydrates, see: D. R. Boyd, N. D. Sharma, V. Ljubez, P. K. M. McGeehin, P. J. Stevenson, M. Blaine, C. C. R. Allen, Org. Biomol. Chem. 2013, 11, 3020.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVWksr4%3D&md5=9b841e309daff8720164c44197778d76CAS | 23532167PubMed |
[16] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXksF2hu7s%3D&md5=ba4f73187c8b5ca6624407e6ba1c2f23CAS |
[17] A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVerur0%3D&md5=4c85af8f7bf828fa87c4b71d3c146c7fCAS |
[18] DENZO–SMN: Z. Otwinowski, W. Minor, in Methods in Enzymology, Volume 276: Macromolecular Crystallography, Part A (Eds C. W. Carter, Jr, R. M. Sweet) 1997, pp. 307–326 (Academic Press: New York, NY).
[19] Agilent Technologies, CrysAlisPro Version 1.171.37.33d (release 23–04–2014 CrysAlis171.NET) (compiled 23 April 2014, 17:37:27).
[20] SIR92: A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr. 1994, 27, 435.
[21] P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Crystallogr. 2003, 36, 1487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptFekt78%3D&md5=52fe653da4b1952a71ef03d2e3c80266CAS |