A Combined Computational–Experimental Study of the Kinetics of Intramolecular Diels–Alder Reactions in a Series of 1,3,8-Nonatrienes*
William J. Lording A , Alan D. Payne A , Tory N. Cayzer A , Michael S. Sherburn A C and Michael N. Paddon-Row B CA Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
B School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
C Corresponding authors. Email: michael.sherburn@anu.edu.au (synthetic); m.paddonrow@unsw.edu.au (computational)
Australian Journal of Chemistry 68(2) 230-240 https://doi.org/10.1071/CH14430
Submitted: 2 July 2014 Accepted: 5 August 2014 Published: 14 October 2014
Abstract
Activation enthalpies for a series of five 1,3,8-nonatriene intramolecular Diels–Alder (IMDA) reactions involving substrates 1–5 have been determined experimentally and Singleton’s natural abundance method has been employed to determine kinetic isotope effects in the IMDA reaction of fumarate 3. The activation enthalpies for the IMDA reactions of the systems possessing a –CH2OCH2– diene/dienophile tether are significantly smaller than their counterparts possessing the –CH2OC(=O)– tether. The experimental activation enthalpies have been used to benchmark computed values from four model chemistries, namely two density functional theory functionals, B3LYP and M06-2X, and two generally very accurate composite ab initio wave function methods, CBS-QB3 and G4(MP2). G4(MP2) outperformed the computationally more expensive CBS-QB3 method, but the vastly cheaper M06-2X/6-31G(d)//B3LYP/6-31G(d) method was sufficiently accurate to be the recommended method of choice for calculating activation parameters. Experimental 2H kinetic isotope effects for the IMDA reaction of fumarate 3 confirmed the computational predictions that this Diels–Alder reaction is concerted but asynchronous.
References
[1] O. Diels, K. Alder, Justus Liebigs Ann. Chem. 1928, 460, 98.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB1cXpsFyn&md5=875b0246e89011dc9dd9c7b2cd26ce66CAS |
[2] K. C. Nicolaou, S. A. Snyder, T. Montagnon, G. Vassilikogiannakis, Angew. Chem. Int. Ed. 2002, 41, 1668.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFymtbw%3D&md5=f94b6b27a1f26c5f1a032ded847066d9CAS |
[3] (a) A. G. Fallis, Can. J. Chem. 1984, 62, 183.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXht1Sis74%3D&md5=38fd716cde18271dd707b978df9ade5eCAS |
(b) D. Craig, Chem. Soc. Rev. 1987, 16, 187.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. R. Bear, S. M. Sparks, K. J. Shea, Angew. Chem. Int. Ed. 2001, 40, 820.
| Crossref | GoogleScholarGoogle Scholar |
(d) K.-i. Takao, R. Munakata, K.-i. Tadano, Chem. Rev. 2005, 105, 4779.
| Crossref | GoogleScholarGoogle Scholar |
[4] W. R. Roush, in Advances in Cycloaddition (Ed. D. P. Curran) 1990, Vol. 2, pp. 91–146 (JAI Press: Greenwich).
[5] (a) M. N. Paddon-Row, D. Moran, G. A. Jones, M. S. Sherburn, J. Org. Chem. 2005, 70, 10841.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFymsLvL&md5=49b285b5550bc457e3178fb60720c801CAS | 16356007PubMed |
(b) T. N. Cayzer, M. N. Paddon-Row, D. Moran, A. D. Payne, M. S. Sherburn, P. Turner, J. Org. Chem. 2005, 70, 5561.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. N. Paddon-Row, A. I. Longshaw, A. C. Willis, M. S. Sherburn, Chem. Asian J. 2009, 4, 126.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) Y. T. Lin, K. N. Houk, Tetrahedron Lett. 1985, 26, 2269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFCgsrk%3D&md5=a12f17e75a873431bbedbeafeaddc0b1CAS |
(b) F. K. Brown, K. N. Houk, Tetrahedron Lett. 1985, 26, 2297.
| Crossref | GoogleScholarGoogle Scholar |
[7] M. K. Diedrich, F. G. Klärner, B. R. Beno, K. N. Houk, H. Senderowitz, W. C. Still, J. Am. Chem. Soc. 1997, 119, 10255.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXms1Ohs74%3D&md5=d32b8931705468e27609368e2f1bfa27CAS |
[8] K. J. Shea, L. D. Burke, W. P. England, J. Am. Chem. Soc. 1988, 110, 860.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXnsVGnsQ%3D%3D&md5=8b590b93289a46b25a5ab2be3f7d4094CAS |
[9] H. W. Gschwend, A. O. Lee, H. P. Meier, J. Org. Chem. 1973, 38, 2169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXktlWitb4%3D&md5=516796449b7833750b21959d96a9693bCAS |
[10] M. L. Curtin, W. H. Okamura, J. Org. Chem. 1990, 55, 5278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltlagsbw%3D&md5=f7d57e31436e6af7eaf978bd94d584c6CAS |
[11] R. K. Boeckman, S. S. Ko, J. Am. Chem. Soc. 1982, 104, 1033.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XosVOktw%3D%3D&md5=9043de73d1d9e14b5ecb81f5f27a73faCAS |
[12] S. Cauwberghs, P. J. De Clercq, B. Tinant, J. P. Declercq, Tetrahedron Lett. 1988, 29, 2493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhvFWqtLs%3D&md5=7cf2041474266d28635bd362abe8adc6CAS |
[13] M. E. Jung, J. Gervay, J. Am. Chem. Soc. 1991, 113, 224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtFentA%3D%3D&md5=16f8c44fa06433e247762187dd6ba140CAS |
[14] D. D. Sternbach, D. M. Rossana, K. D. Onan, Tetrahedron Lett. 1985, 26, 591.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXksFenurw%3D&md5=20caf8e9852c01782318f03d132f517eCAS |
[15] M. E. Jung, J. Gervay, Tetrahedron Lett. 1988, 29, 2429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhvFWqtLo%3D&md5=900ba7248ff8cdf428079ab9210d8afbCAS |
[16] E. Abraham, J. W. B. Cooke, S. G. Davies, A. Naylor, R. L. Nicholson, P. D. Price, A. D. Smith, Tetrahedron 2007, 63, 5855.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVamsLk%3D&md5=f2ddaf520a41c4bb66fa429e2561537cCAS |
[17] R. Annunziata, M. Cinquini, F. Cozzi, L. Raimondi, J. Org. Chem. 1990, 55, 1901.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhtlyqtrk%3D&md5=6ce223d4ddbbfc26067f8f0206bc9d9bCAS |
[18] W. C. Still, C. Gennari, Tetrahedron Lett. 1983, 24, 4405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmslyitA%3D%3D&md5=af3fd3c2a00e6fbfcb97b3bdbcaaad4fCAS |
[19] D. A. Singleton, A. A. Thomas, J. Am. Chem. Soc. 1995, 117, 9357.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXns1Citrs%3D&md5=010c45aef371ec6c7f1f8f5a9e190573CAS |
[20] T. D. W. Claridge, S. G. Davies, M. E. C. Polywka, P. M. Roberts, A. J. Russell, E. D. Savory, A. D. Smith, Org. Lett. 2008, 10, 5433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWqtbvJ&md5=935848d5a80609316f8ed08baa8886b0CAS |
[21] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.1 2009 (Gaussian, Inc.: Wallingford, CT).
[22] (a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=b184c28582a539788de66bd09b952e08CAS |
(b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar |
(c) For reviews of density-functional methods, see: T. Ziegler, Chem. Rev. 1991, 91, 651.
| Crossref | GoogleScholarGoogle Scholar |
(d) Density Functional Methods in Chemistry (Eds J. K. Labanowski, J. W. Andzelm) 1991 (Springer Verlag: New York, NY).
(e) R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules 1989 (Oxford University Press: New York, NY).
(f) W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory 2000 (Wiley–VCH: Weinheim).
[23] (a) W. J. Hehre, L. Radom, P. v.R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory 1986 (John Wiley & Sons, Inc.: New York, NY).
(b) Encyclopedia of Computational Chemistry (Eds P. v.R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, P. R. Schreiner) 1998 (John Wiley & Sons, Ltd.: Chichester).
[24] (a) V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXht1Cgt7o%3D&md5=e1514ceb7688b933810c1a2c7ac8c824CAS |
(b) M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669.
| Crossref | GoogleScholarGoogle Scholar |
[25] (a) S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. Miertuš, J. Tomasi, Chem. Phys. 1982, 65, 239.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett. 1996, 255, 327.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Cammi, B. Mennucci, J. Tomasi, J. Phys. Chem. A 2000, 104, 5631.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys. 2002, 117, 43.
| Crossref | GoogleScholarGoogle Scholar |
[26] (a) O. Wiest, D. C. Montiel, K. N. Houk, J. Phys. Chem. A 1997, 101, 8378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVamu7s%3D&md5=fdcbc59aa9a27dde19b28b1e39002ea9CAS |
(b) M. J. Lilly, M. N. Paddon-Row, M. S. Sherburn, C. I. Turner, Chem. Commun. 2000, 2213.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. N. Paddon-Row, M. S. Sherburn, Chem. Commun. 2000, 2215.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. Kong, J. D. Evanseck, J. Am. Chem. Soc. 2000, 122, 10418.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. J. Tantillo, K. N. Houk, M. E. Jung, J. Org. Chem. 2001, 66, 1938.
| Crossref | GoogleScholarGoogle Scholar |
(f) C. I. Turner, R. M. Williamson, M. N. Paddon-Row, M. S. Sherburn, J. Org. Chem. 2001, 66, 3963.
| Crossref | GoogleScholarGoogle Scholar |
(g) T. N. Cayzer, L. S.-M. Wong, P. Turner, M. N. Paddon-Row, M. S. Sherburn, Chem. – Eur. J. 2002, 8, 739.
| Crossref | GoogleScholarGoogle Scholar |
(h) G. A. Jones, M. N. Paddon-Row, M. S. Sherburn, C. I. Turner, Org. Lett. 2002, 4, 3789.
| Crossref | GoogleScholarGoogle Scholar |
(i) T. N. Cayzer, M. N. Paddon-Row, M. S. Sherburn, Eur. J. Org. Chem. 2003, 4059.
| Crossref | GoogleScholarGoogle Scholar |
(j) C. I. Turner, M. N. Paddon-Row, A. C. Willis, M. S. Sherburn, J. Org. Chem. 2005, 70, 1154.
| Crossref | GoogleScholarGoogle Scholar |
(k) M. J. Lilly, N. A. Miller, A. J. Edwards, A. C. Willis, P. Turner, M. N. Paddon-Row, M. S. Sherburn, Chem. – Eur. J. 2005, 11, 2525.
| Crossref | GoogleScholarGoogle Scholar |
(l) T. N. Cayzer, M. J. Lilly, R. M. Williamson, M. N. Paddon-Row, M. S. Sherburn, Org. Biomol. Chem. 2005, 3, 1302.
| Crossref | GoogleScholarGoogle Scholar |
(m) T. N. Cayzer, N. A. Miller, M. N. Paddon-Row, M. S. Sherburn, Org. Biomol. Chem. 2006, 4, 2019.
| Crossref | GoogleScholarGoogle Scholar |
(n) E. L. Pearson, L. C. H. Kwan, C. I. Turner, G. A. Jones, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, J. Org. Chem. 2006, 71, 6099.
| Crossref | GoogleScholarGoogle Scholar |
(o) R. Tripoli, T. N. Cayzer, A. C. Willis, M. S. Sherburn, M. N. Paddon-Row, Org. Biomol. Chem. 2007, 5, 2606.
| Crossref | GoogleScholarGoogle Scholar |
(p) T. A. Bradford, A. D. Payne, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, Org. Lett. 2007, 9, 4861.
| Crossref | GoogleScholarGoogle Scholar |
(q) E. L. Pearson, A. C. Willis, M. S. Sherburn, M. N. Paddon-Row, Org. Biomol. Chem. 2008, 6, 513.
| Crossref | GoogleScholarGoogle Scholar |
(r) M. N. Paddon-Row, L. C. H. Kwan, A. C. Willis, M. S. Sherburn, Angew. Chem. Int. Ed. 2008, 47, 7013.
| Crossref | GoogleScholarGoogle Scholar |
(s) T. Fallon, D. E. J. E. Robinson, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, Chem. – Eur. J. 2010, 16, 760.
| Crossref | GoogleScholarGoogle Scholar |
(t) E. L. Pearson, N. Kanizaj, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, Chem. – Eur. J. 2010, 16, 8280.
| Crossref | GoogleScholarGoogle Scholar |
(u) K. M. Cergol, C. G. Netwon, A. L. Lawrence, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, Angew. Chem. Int. Ed. 2011, 50, 10425.
| Crossref | GoogleScholarGoogle Scholar |
(v) M. N. Paddon-Row, M. S. Sherburn, Chem. Commun. 2012, 832.
| Crossref | GoogleScholarGoogle Scholar |
(w) H. Toombs-Ruane, E. L. Pearson, M. N. Paddon-Row, M. S. Sherburn, Chem. Commun. 2012, 6639.
| Crossref | GoogleScholarGoogle Scholar |
(x) R. Wang, G. Bojase, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, Org. Lett. 2012, 14, 5652.
| Crossref | GoogleScholarGoogle Scholar |
(y) N. J. Green, A. L. Lawrence, G. Bojase, A. C. Willis, M. N. Paddon-Row, M. S. Sherburn, Angew. Chem. Int. Ed. 2013, 52, 8333.
| Crossref | GoogleScholarGoogle Scholar |
[27] (a) S. N. Pieniazek, F. R. Clemente, K. N. Houk, Angew. Chem. Int. Ed. 2008, 47, 7746.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Gms7rO&md5=7ba855616799d4add69dc48f967b4759CAS |
(b) S. Grimme, Angew. Chem. Int. Ed. 2006, 45, 4460.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Grimme, M. Steinmetz, M. Korth, J. Org. Chem. 2007, 72, 2118.
| Crossref | GoogleScholarGoogle Scholar |
[28] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=78694ab799c17471eb4f1547406dfe71CAS |
[29] Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksV2iug%3D%3D&md5=29db5dc0f646fd694351ff1dd7949bc8CAS | 18186612PubMed |
[30] L. Simón, J. M. Goodman, Org. Biomol. Chem. 2011, 9, 689.
| Crossref | GoogleScholarGoogle Scholar | 20976314PubMed |
[31] V. Guner, K. S. Khuong, A. G. Leach, P. S. Lee, M. D. Bartberger, K. N. Houk, J. Phys. Chem. A 2003, 107, 11445.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Wqt70%3D&md5=9ca55d6dfbfa982d015d0393fd364d59CAS |
[32] (a) J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 1999, 110, 2822.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltlKntg%3D%3D&md5=143901429a5e88c3ddf6867e12c886a2CAS |
(b) J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 2000, 112, 6532.
| Crossref | GoogleScholarGoogle Scholar |
[33] (a) L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 2007, 126, 084108.
| Crossref | GoogleScholarGoogle Scholar | 17343441PubMed |
(b) L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 2007, 127, 124105.
| Crossref | GoogleScholarGoogle Scholar |
[34] J. P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 2007, 111, 11683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOrs77F&md5=ee0ea1823313cafa2b549377a8c6c674CAS | 17948971PubMed |
[35] See pp. 60–63 in R. P. Bell, The Tunnel Effect in Chemistry 1980 (Chapman and Hall: London).
[36] (a) B. R. Beno, K. N. Houk, D. A. Singleton, J. Am. Chem. Soc. 1996, 118, 9984.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtF2hs7s%3D&md5=bbfb3ea833363afca90aa72fdcef4d18CAS |
(b) D. E. Frantz, D. A. Singleton, J. P. Snyder, J. Am. Chem. Soc. 1997, 119, 3383.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. A. Singleton, S. R. Merrigan, J. Liu, K. N. Houk, J. Am. Chem. Soc. 1997, 119, 3385.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. J. DelMonte, J. Haller, K. N. Houk, K. B. Sharpless, D. A. Singleton, T. Strassner, A. A. Thomas, J. Am. Chem. Soc. 1997, 119, 9907.
| Crossref | GoogleScholarGoogle Scholar |
[37] D. A. Singleton, S. R. Merrigan, B. R. Beno, K. N. Houk, Tetrahedron Lett. 1999, 40, 5817.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvF2rsLo%3D&md5=58ace1f3117bc046b57354676d90bd8dCAS |
[38] O. Acevedo, J. D. Evanseck, Org. Lett. 2003, 5, 649.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslyqsw%3D%3D&md5=c63f9535c402f4eca04b0c9f1dc97ffdCAS | 12605481PubMed |
[39] J. Sauer, R. Sustmann, Angew. Chem. Int. Ed. Engl. 1980, 19, 779.
| Crossref | GoogleScholarGoogle Scholar |
[40] X. Wang, K. N. Houk, J. Am. Chem. Soc. 1988, 110, 1870.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhtlSqs7c%3D&md5=7eb07d05293ca0cbd9f7c69b4bca3b28CAS |
[41] For example, we found that using G4(MP2) to calculate the energy of C15H20N2O3, containing 20 non-hydrogen atoms, took the equivalent of 860 single-cpu hours on a Fujitsu Primergy system and required 42 GB of memory and 310 GB file system.
[42] A. Bondi, J. Phys. Chem. 1964, 68, 441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXls1Cgsg%3D%3D&md5=116107986ca72c813bccbb0748675625CAS |
[43] H9E and H9Z denote whether H9 is either E or Z with respect to C7 of the tether respectively.