Regioselective Dye-Induced Photocleavage of Epoxides as an Alternative Mild Synthetic Route to a Targeted Alcohol Functionality
Anthony A. Provatas A B , Gary A. Epling , James D. Stuart A and Aliaksandr Yeudakimau AA University of Connecticut, Center for Environmental Sciences and Engineering, 3107 Horsebarn Hill Road Unit 4210, Storrs, Connecticut 06269-4210, USA.
B Corresponding author. Email: anthony.provatas@uconn.edu
Australian Journal of Chemistry 68(3) 500-504 https://doi.org/10.1071/CH14327
Submitted: 23 May 2014 Accepted: 3 July 2014 Published: 22 September 2014
Abstract
The regioselective cleavage of epoxides using visible light and a catalytic dye is reported in this study as an alternative mild synthetic approach. The epoxide radical anion is generated via visible light in an electron transfer reaction, induced by non-toxic dyes, leading to ring opening and formation of the corresponding alcohol with the hydroxyl group on the less substituted carbon in excellent yields.
References
[1] (a) A. S. Rao, S. K. Paknikar, J. G. Kirtane, Tetrahedron 1983, 39, 2323.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlsFyitro%3D&md5=2b6830a5ba0f985737c56e1a0b29b1dfCAS |
(b) M. Bösing, A. Nöh, I. Loose, B. Krebs, J. Am. Chem. Soc. 1998, 120, 7252.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. K. Aggarwal, A. Ali, M. P. Coogan, J. Org. Chem. 1997, 62, 8628.
| Crossref | GoogleScholarGoogle Scholar |
(d) B. Schmidt, Org. Lett. 2000, 2, 791.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. Limberg, T. Wistuba, J. Org. Chem. 1999, 64, 6169.
| Crossref | GoogleScholarGoogle Scholar |
(f) T. Ooi, N. Kagoshima, H. Ichikawa, K. Maruoka, J. Am. Chem. Soc. 1999, 121, 3328.
| Crossref | GoogleScholarGoogle Scholar |
(g) G. Sabitha, R. S. Babu, M. Rajkumar, J. S. Yadav, Org. Lett. 2002, 4, 343.
| Crossref | GoogleScholarGoogle Scholar |
[2] R. E. Parker, N. S. Isaacs, Chem. Rev. 1959, 59, 737.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXhtVGit7o%3D&md5=e08467ac9948d096250857566c00f01fCAS |
[3] H. C. Brown, N. M. Yoon, J. Am. Chem. Soc. 1968, 90, 2686.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXivVCgtQ%3D%3D&md5=d0abd335d3a2ab06d6c749e5576832d8CAS |
[4] C. Bonini, R. Di Fabio, Tetrahedron Lett. 1988, 29, 819.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXit1yqtw%3D%3D&md5=3aa9dec8311631af5fd6b89ecdfe4f24CAS |
[5] S. Krishnamurthy, R. M. Schubert, H. C. Brown, J. Am. Chem. Soc. 1973, 95, 8486.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXhsVKhtw%3D%3D&md5=bbed9c2025fd642bf043f64578c115dcCAS |
[6] R. O. Hutchins, I. M. Taffer, W. Burgoyne, J. Org. Chem. 1981, 46, 5214.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtVartb0%3D&md5=2b53edb4350278bc8f95a6a2ed4377fbCAS |
[7] K. Boujlel, P. Martigny, J. Simonet, J. Electroanal. Chem. 1983, 144, 437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhtlCiu7w%3D&md5=8f8db456fbc6ab6110582f038899f04aCAS |
[8] C. Bonini, G. Righi, G. Sotgiu, J. Org. Chem. 1991, 56, 6206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvVamtLs%3D&md5=3952397b055f2991b1b26d7ae2abc58bCAS |
[9] E. N. Jacobsen, Acc. Chem. Res. 2000, 33, 421.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFKhsLY%3D&md5=c83a122550265468e198bb11269b1cc9CAS | 10891060PubMed |
[10] (a) S. Matsunaga, J. Das, J. Roels, E. M. Vogl, N. Yamamoto, T. Iida, K. Yamaguchi, M. Shibasaki, J. Am. Chem. Soc. 2000, 122, 2252.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlGqur8%3D&md5=385126c2909a2f26a574310b2160bfdeCAS |
(b) A. Z. Halimehjani, H. Gholami, M. R. Saidi, Green Chem. Lett. Rev. 2012, 5, 1.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. W. Kim, D. W. Cho, G. Park, S. H. Kim, C. S. Ra, Bull. Korean Chem. Soc. 2013, 34, 2286.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. L. N. Murthy, B. S. Diwakar, B. Govindh, R. Venu, K. Nagalakshmi, Chem. Sci. Trans. 2013, 2, 805.
(e) S. Roscales, A. G. Csaky, Chem. Commun. 2014, 50, 454.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) E. Hasegawa, K. Ishiyama, T. Horaguchi, T. Shimizu, J. Org. Chem. 1991, 56, 1631.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhsVaqurk%3D&md5=f9eaf5e80f11ef25df88097ae72491deCAS |
(b) E. Hasegawa, K. Ishiyama, T. Fujita, T. Kato, T. Abe, J. Org. Chem. 1997, 62, 2396.
| Crossref | GoogleScholarGoogle Scholar |
[12] J. Cossy, A. Bouzide, S. Ibhi, P. Aclinou, Tetrahedron 1991, 47, 7775.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitVChsw%3D%3D&md5=836ad8d170d20ed52f6696f1ebda0e0fCAS |
[13] G. A. Epling, Q. Wang, J. Chem. Soc., Chem. Commun. 1992, 1133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvFWnsr4%3D&md5=53d0d80dc2bd34c95b6e13930eb862c5CAS |
[14] 2-Phenylethanol: δH ( CDCl3, 270 MHz) 7.36–7.23 (5H, m), 3.82 (2H, t), 2.87 (2H, t), 2.10 (1H, br s).
[15] Cyclohexanol: δH ( CDCl3, 270 MHz) 3.70–3.45 (1H, m), 2.61 (1H, br s), 0.9–2.05 (5H, m).
[16] Chemical properties of the organic dyes used as photosensitizers are as follows (FD&C are colorants approved by the Food and Drug Administration for use in food, drugs, and cosmetics; D&C are colorants used in drugs and cosmetics, but not food). (1) FD&C green #3: formula weight (FW) 808.86, λmax 624 nm, class – triphenylmethane, type – anionic; (2) D&C violet #2: FW 329.36, λmax 570 nm, class – anthraquinone, type – neutral; (3) D&C yellow #10: FW 579.31, λmax 411 nm, class – quinoline, type – anionic; (4) D&C green #8: FW 524.39, λmax 403 nm, class – phenanthrene, type – anionic; (5) Carmoisine: FW 502.00, λmax 515 nm, class – monoazo, type – anionic; (6) MG: FW 433.00, λmax 657(618) nm, class – thiazinc, type – cationic; and (7) FD&C blue #1: FW 791.00, λmax 628 nm, class – triphenylmethane, type – anionic.