Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Physical Properties of Hyperbranched Polymers Containing Twisted Acenes

Xuemin Zhang A , Hongtao Song A , Jinchong Xiao A B , Tiejun Ren A , Sujuan Wang A , Zhenying Liu A , Xinwu Ba A and Yonggang Wu A B
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Environment Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.

B Corresponding authors. Email: jcxiaoiccas@gmail.com; wuyonggang@iccas.ac.cn

Australian Journal of Chemistry 68(3) 505-512 https://doi.org/10.1071/CH14322
Submitted: 21 May 2014  Accepted: 9 July 2014   Published: 30 September 2014

Abstract

Novel hyperbranched co-polymers HP1HP4 with twisted acene units and truxene groups have been synthesised through Suzuki coupling reaction and characterised. Single crystal analyses showed that the model compounds 3 and 5 had twisted structures with torsion angles of 40.73° and 28.65°, respectively. The polymers show blue light emission in organic solvents and thin films, as well as high stability, which might be utilised as potential candidates for organic electronic materials.


References

[1]  (a) M. Bendikov, F. Wudl, Chem. Rev. 2004, 104, 4891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovFSmtbw%3D&md5=0d52a5e77f5e33a334f2acf0446c1b63CAS | 15535637PubMed |
      (b) J. E. Anthony, Chem. Rev. 2006, 106, 5028.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Chem. Rev. 2007, 107, 1233.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Xiao, B. Yang, J. I. Wong, Y. Liu, F. Wei, K. J. Tan, X. Teng, Y. Wu, L. Huang, C. Kloc, F. Boey, J. Ma, H. Zhang, H. Yang, Q. Zhang, Org. Lett. 2011, 13, 3004.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) D. Liu, Q. Li, R. Wang, Aust. J. Chem. 2013, 66, 594.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) Y. Guo, Q. Tang, H. Liu, Y. Zhang, Y. Li, W. Hu, S. Wang, D. Zhu, J. Am. Chem. Soc. 2008, 130, 9198.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvF2htro%3D&md5=832399f7271166fa109c69a93637f967CAS | 18588295PubMed |
      (b) X. Qian, H. Liu, N. Chen, H. Zhou, L. Sun, Y. Li, Y. Li, Inorg. Chem. 2012, 51, 677.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. Yuan, Z. Yu, Y. Tang, J. W. Y. Lam, N. Xie, P. Lu, E. Q. Chen, B. Z. Tang, Macromolecules 2011, 44, 9618.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. Wang, K. Wang, Q. Fu, J. Zhang, D. Ma, Y. Wang, J. Mater. Chem. C 2013, 1, 410.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Y. Zhao, J. Chen, D. Ma, ACS Appl. Mater. Interfaces 2013, 5, 965.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) T. Lei, J. Dou, X. Cao, J. Wang, J. Pei, J. Am. Chem. Soc. 2013, 135, 12168.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslWlsrw%3D&md5=b9a4ebfa4caf3853030da190652b6514CAS | 23675890PubMed |
      (b) S. Xiao, S. J. Kang, Y. Wu, S. Ahn, J. B. Kim, Y. L. Loo, T. Siegrist, M. L. Steiger, H. Li, C. Nuckolls, Chem. Sci. 2013, 4, 2018.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Mei, Y. Diao, A. L. Appleton, L. Fang, Z. Bao, J. Am. Chem. Soc. 2013, 135, 6724.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. J. Bettinger, Z. Bao, Adv. Mater. 2010, 22, 651.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) P. Gu, F. Zhou, J. Gao, G. Li, C. Wang, Q. Xu, Q. Zhang, J. Lu, J. Am. Chem. Soc. 2013, 135, 14086.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. Xiao, Y. Azuma, Y. Liu, G. Li, F. Wei, K. J. Tan, C. Kloc, H. Zhang, Y. Majima, Q. Zhang, Aust. J. Chem. 2012, 65, 1674.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) Y. Li, Acc. Chem. Res. 2012, 45, 723.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyrtr0%3D&md5=a947d24ed01060c8c05ba28c3ca8e237CAS | 22288572PubMed |
      (b) J. E. Coughlin, Z. B. Henson, G. C. Welch, G. C. Bazan, Acc. Chem. Res. 2014, 47, 257.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X. Gong, C. Li, Z. Lu, G. Li, Q. Mei, T. Fang, Z. Bo, Macromol. Rapid Commun. 2013, 34, 1163.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. Ren, J. Xiao, W. Wang, W. Xu, S. Wang, X. Zhang, X. Wang, H. Chen, J. Zhao, L. Jiang, Chem. – Asian J. 2014, 9, 1943.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) L. Feng, C. Zhu, H. Yuan, L. Liu, F. Lv, S. Wang, Chem. Soc. Rev. 2013, 42, 6620.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFeqtrfN&md5=00f075db54cf5287da960ac5df193a91CAS | 23744297PubMed |
      (b) C. Zhu, L. Liu, Q. Yang, F. Lv, S. Wang, Chem. Rev. 2012, 112, 4687.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. A. Traina, R. C. Bakus, G. C. Bazan, J. Am. Chem. Soc. 2011, 133, 12600.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Wang, J. Xiao, S. Wang, B. Yang, X. Ba, Supramol. Chem. 2010, 22, 380.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Y. Zhao, Y. Li, Y. Li, H. Zheng, X. Yin, H. Liu, Chem. Commun. 2010, 46, 5698.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) D. Ding, K. Li, B. Liu, B. Z. Tang, Acc. Chem. Res. 2013, 46, 2441.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  C. Wang, K. Wang, Q. Fu, J. Zhang, D. Ma, Y. Wang, J. Mater. Chem. C 2013, 1, 410.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVeltrrK&md5=ec55cd47feedc1032eaee9b23cdd4cb7CAS |

[7]  (a) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Tang, Chem. Commun. 2001, 1740.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvFCitrw%3D&md5=61217af9348220011ee655e2ee69a581CAS |
      (b) Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. K. An, J. Gierschner, S. Y. Park, Acc. Chem. Res. 2012, 45, 544.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) J. Xiao, H. M. Duong, Y. Liu, W. Shi, L. Ji, G. Li, S. Li, X. Liu, J. Ma, F. Wudl, Q. Zhang, Angew. Chem. Int. Ed. 2012, 51, 6094.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1enu7Y%3D&md5=631ef1184ba66deaf655f230080436a5CAS |
      (b) J. Xiao, S. Liu, Y. Liu, L. Ji, X. Liu, H. Zhang, X. Sun, Q. Zhang, Chem.­– Asian J. 2012, 7, 561.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Xiao, C. D. Malliakas, Y. Liu, F. Zhou, G. Li, H. Su, M. G. Kanatzidis, F. Wudl, Q. Zhang, Chem. – Asian J. 2012, 7, 672.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. Xiao, Y. Divayana, Q. Zhang, H. M. Doung, H. Zhang, F. Boey, X. W. Sun, F. Wudl, J. Mater. Chem. 2010, 20, 8167.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) Q. Pei, Y. Yang, J. Am. Chem. Soc. 1996, 118, 7416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktlGhsLk%3D&md5=18b5c4f45335d7cd93777e929ff037c3CAS |
      (b) F. Huang, H. Wu, D. Wang, W. Yang, Y. Cao, Chem. Mater. 2004, 16, 708.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmt1Sru7o%3D&md5=deffd4243513f0405c684798f7da54acCAS |
      (b) H. L. Chow, K. F. Lin, D. C. Wang, J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 62.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) Y. Yang, Q. Pei, A. J. Heeger, J. Appl. Phys. 1996, 79, 934.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltFKnsA%3D%3D&md5=873f53f7ac63bd7d0daea23cb7bcd77aCAS |
      (b) I. K. Spiliopoulos, J. A. Mikroyannidis, J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 2591.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  J. Pei, W. L. Yu, J. Ni, Y. H. Lai, W. Huang, A. J. Heeger, Macromolecules 2001, 34, 7241.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1Cltb8%3D&md5=0d9fd802841ddba13251aa34caadb230CAS |

[13]  C. Yang, H. Scheiber, E. J. W. List, J. Jacob, K. Müllen, Macromolecules 2006, 39, 5213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmsl2ktrw%3D&md5=1cda6676ed825608dfd9c34761c44bbeCAS |

[14]  Z. Liu, J. Xiao, Q. Fu, H. Feng, X. Zhang, T. Ren, S. Wang, D. Ma, X. Wang, H. Chen, ACS Appl. Mater. Interfaces 2013, 5, 11136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1CgsbzF&md5=31bef45fe9c623b2a7584da1140e8841CAS | 24144121PubMed |

[15]  Y. Wu, X. Hao, J. Wu, J. Jin, X. Ba, Macromolecules 2010, 43, 731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WltrbP&md5=2c30a282ef8bc9ab1d131be2ba9fbd77CAS |

[16]  V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J. L. Brédas, Chem. Rev. 2007, 107, 926.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1ymsb8%3D&md5=25f6dab53ff1c70b3691377ff1035c83CAS | 17378615PubMed |