Assembly of Layer-Type Organosilver(i) Complexes Incorporating Nitrate and Isomeric Halophenylethynide Ligands
Ping-Shing Cheng A , Sam C. K. Hau A and Thomas C. W. Mak A BA Department of Chemistry and Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
B Corresponding author. Email: tcwmak@cuhk.edu.hk
Australian Journal of Chemistry 67(12) 1849-1859 https://doi.org/10.1071/CH14326
Submitted: 22 May 2014 Accepted: 23 July 2014 Published: 3 September 2014
Abstract
Single-crystal X-ray analysis of a series of 10 silver(i) nitrate complexes containing carbon-rich ligands each composed of a halosubstituted phenyl nucleus bearing a terminal ethynyl group at various positions provided detailed information on the influence of ligand disposition and orientation, coordination preferences, and the co-existence of silver(i)–ethynide and silver(i)–halogen interactions in the construction of coordination networks, which are consolidated by argentophilic and weak intra or intermolecular interactions.
References
[1] (a) S. Barlow, D. O’Hare, Chem. Rev. 1997, 97, 637.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisF2murk%3D&md5=77e50ae57a2b119aa3e84aa22ac2d790CAS | 11848884PubMed |
(b) I. R. Whittall, A. M. McDonagh, M. G. Humphrey, Adv. Organomet. Chem. 1998, 42, 291.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. P. Cifuentes, M. G. Humphrey, J. Organomet. Chem. 2004, 689, 3968.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) M. Younus, A. Kohler, S. Cron, N. Chawdhury, M. R. A. Al-Madani, M. S. Khan, N. J. Long, R. H. Friend, P. R. Raithby, Angew. Chem. Int. Ed. 1998, 37, 3036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvFGhsrs%3D&md5=cf8e380c641e82f2957951e78f9bf01cCAS |
(b) V. W.-W. Yam, Acc. Chem. Res. 2002, 35, 555.
| Crossref | GoogleScholarGoogle Scholar |
(c) Q.-H. Wei, L.-Y. Zhang, G.-Q. Yin, L.-X. Shi, Z.-N. Chen, J. Am. Chem. Soc. 2004, 126, 9940.
| Crossref | GoogleScholarGoogle Scholar |
(d) H.-B. Xu, L.-X. Shi, E. Ma, L.-Y. Zhang, Q.-H. Wei, Z.-N. Chen, Chem. Commun. 2006, 1601.
| Crossref | GoogleScholarGoogle Scholar |
(e) H.-B. Xu, J. Ni, K.-J. Chen, L.-Y. Zhang, Z.-N. Chen, Organometallics 2008, 27, 5665.
| Crossref | GoogleScholarGoogle Scholar |
(f) H.-B. Xu, L.-Y. Zhang, J. Ni, H.-Y. Chao, Z.-N. Chen, Inorg. Chem. 2008, 47, 10744.
| Crossref | GoogleScholarGoogle Scholar |
(g) H.-B. Xu, L.-Y. Zhang, X.-M. Chen, X.-L. Li, Z.-N. Chen, Cryst. Growth Des. 2009, 9, 569.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) F. Paul, C. Lapinte, Coord. Chem. Rev. 1998, 178–180, 431.
| Crossref | GoogleScholarGoogle Scholar |
(b) V. W.-W. Yam, K. M.-C. Wong, Top. Curr. Chem. 2005, 257, 1.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Rigaut, C. Olivier, K. Costuas, S. Choua, O. Fadhel, J. Massue, P. Turek, J. Y. Saillard, P. H. Dixneuf, D. Touchard, J. Am. Chem. Soc. 2006, 128, 5859.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. A. Koutsantonis, G. I. Jenkins, P. A. Schauer, B. Szczepaniak, B. W. Skelton, C. Tan, A. H. White, Organometallics 2009, 28, 2195.
| Crossref | GoogleScholarGoogle Scholar |
(e) K. J. Kilpin, M. L. Gower, S. G. Telfer, G. B. Jameson, J. D. Crowley, Inorg. Chem. 2011, 50, 1123.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) P. Braunstein, C. Frison, N. Oberbeckmann-Winter, X. Morise, A. Messaoudi, M. Bénard, M.-M. Rohmer, R. Welter, Angew. Chem. Int. Ed. 2004, 43, 6120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKgsrvI&md5=660543bce1f70b4cd0692fcdb80a3ea7CAS |
(b) T. K. Ronson, T. Lazarides, H. Adams, S. J. A. Pope, D. Sykes, S. Faulkner, S. J. Coles, M. B. Hursthouse, W. Clegg, R. W. Harrington, M. D. Ward, Chem. – Eur. J. 2006, 12, 9299.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Salazar-Mendoza, S. A. Baudron, M. W. Hosseini, Chem. Commun. 2007, 2252.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. Fernández-Cortabitarte, F. García, J. V. Morey, M. McPartlin, S. Singh, A. E. H. Wheatley, D. S. Wright, Angew. Chem. Int. Ed. 2007, 46, 5425.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) M. I. Bruce, Chem. Rev. 1991, 91, 197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1Chu7s%3D&md5=c10747ba06f5e80875a826e6b59c9b00CAS |
(b) H. Lang, D. S. A. George, G. Rheinwald, Coord. Chem. Rev. 2000, 206–207, 101.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. J. Long, C. K. Williams, Angew. Chem. Int. Ed. 2003, 42, 2586.
| Crossref | GoogleScholarGoogle Scholar |
(d) V. W.-W. Yam, J. Organomet. Chem. 2004, 689, 1393.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. S. Y. Chui, M. F. Y. Ng, C.-M. Che, Chem. – Eur. J. 2005, 11, 1739.
| Crossref | GoogleScholarGoogle Scholar |
(f) W.-Y. Wong, Coord. Chem. Rev. 2007, 251, 2400.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) C. P. McArdle, J. J. Vittal, R. J. Puddephatt, Angew. Chem. Int. Ed. 2000, 39, 3819.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFyqtbk%3D&md5=5a62609530eeac00ee649c11a06d4799CAS |
(b) C. P. McArdle, M. C. Jennings, J. J. Vittal, R. J. Puddephatt, Chem. – Eur. J. 2001, 7, 3572.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. P. McArdle, M. J. Irwin, M. C. Jennings, J. J. Vittal, R. J. Puddephatt, Chem. – Eur. J. 2002, 8, 723.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. P. McArdle, S. Van, M. C. Jennings, R. J. Puddephatt, J. Am. Chem. Soc. 2002, 124, 3959.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. Mohr, M. C. Jennings, R. J. Puddephatt, Eur. J. Inorg. 2003, 217.
(f) T. J. Burchell, M. C. Jennings, R. J. Puddephatt, Inorg. Chim. Acta 2006, 359, 2812.
| Crossref | GoogleScholarGoogle Scholar |
(g) N. C. Habermehl, D. J. Eisler, C. K. Kirby, N. L.-S. Yue, R. J. Puddephatt, Organometallics 2006, 25, 2921.
| Crossref | GoogleScholarGoogle Scholar |
[7] The term ‘silver–ethynide’ is preferred to ‘silver–ethynyl’ because the silver–carbon bonding interaction is considered to be mainly ionic with minor covalent σ and π components; the negative charge residing mainly on the terminal C atom draws neighboring AgI ions close to one another to facilitate the onset of argentophilic Ag···Ag interactions. See: T. C. W. Mak, L. Zhao, X.-L. Zhao, in The Importance of Pi-Interactions in Crystal Engineering (Eds E. R. T. Tiekink, J. Zukerman-Schpector) 2012, Ch. 13, pp. 323–366 (Wiley: Chichester, UK), and references cited therein.
[8] (a) G. R. Desiraju, Angew. Chem. Int. Ed. Engl. 1995, 34, 2311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsFOitbw%3D&md5=4efd908c6658c780d8f225682c263eaaCAS |
(b) A. Nangia, G. R. Desiraju, Top. Curr. Chem. 1998, 198, 57.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. R. Desiraju, Angew. Chem. Int. Ed. 2007, 46, 8342.
| Crossref | GoogleScholarGoogle Scholar |
(d) P.-S. Cheng, S. Marivel, S.-Q. Zang, G.-G. Gao, T. C. W. Mak, Cryst. Growth Des. 2012, 12, 4519.
| Crossref | GoogleScholarGoogle Scholar |
(e) T. Hu, T. C. W. Mak, Inorg. Chem. 2013, 52, 9066.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) P. Pyykkö, Chem. Rev. 1988, 88, 563.
| Crossref | GoogleScholarGoogle Scholar |
(b) P. Pyykkö, Chem. Rev. 1997, 97, 597.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. Pyykkö, Chem. Soc. Rev. 2008, 37, 1967.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. Grimme, J.-P. Djukic, Inorg. Chem. 2010, 49, 2911.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. Muñiz, C. Wang, P. Pyykkö, Chem. – Eur. J. 2011, 17, 368.
| Crossref | GoogleScholarGoogle Scholar |
[10] V. W. W. Yam, W. K. M. Fung, K. K. Cheung, Angew. Chem. Int. Ed. Engl. 1996, 35, 1100.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsFGks7g%3D&md5=c3c2a64f27f022214856061aafdd091bCAS |
[11] (a) T. C. W. Mak, L. Zhao, Chem. Asian J. 2007, 2, 456.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVSnsro%3D&md5=ab349a9ead20a10a49cae2d21519cae2CAS |
(b) S. C. K. Hau, P.-S. Cheng, T. C. W. Mak, J. Am. Chem. Soc. 2012, 134, 2922.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y.-P. Xie, T. C. W. Mak, J. Am. Chem. Soc. 2011, 133, 3760.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y.-P. Xie, T. C. W. Mak, Angew. Chem. Int. Ed. 2012, 51, 8783.
| Crossref | GoogleScholarGoogle Scholar |
(e) Z.-G. Jiang, K. Shi, Y.-M. Lin, Q.-M. Wang, Chem. Commun. 2014, 2353.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. C. K. Hau, T. C. W. Mak, J. Am. Chem. Soc. 2014, 136, 902.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) T. Zhang, J. Kong, Y. Hu, X. Meng, H. Yin, D. Hu, C. Ji, Inorg. Chem. 2008, 47, 3144.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislKqt70%3D&md5=4d3ddd93f36812e34b1562afbb0ad4e8CAS | 18318479PubMed |
(b) T. Zhang, H. Song, X. Dai, X. Meng, Dalton Trans. 2009, 7688.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. Zhang, Y. Hu, J. Kong, X. Meng, X. Dai, H. Song, CrystEngComm 2010, 12, 3027.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Zhao, P. Zhang, B. Li, X. Meng, T. Zhang, Inorg. Chem. 2011, 50, 9097.
| Crossref | GoogleScholarGoogle Scholar |
(e) Z. Zhang, B. Li, X. Meng, X. Yin, T. Zhang, Dalton Trans. 2013, 4306.
| Crossref | GoogleScholarGoogle Scholar |
[13] S. M. J. Wang, T. C. W. Mak, Polyhedron 2009, 28, 2684.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvF2rtLg%3D&md5=62f8bda4d426fca96c59350a743a13eeCAS |
[14] P.-S. Cheng, S. C. K. Hau, T. C. W. Mak, Inorg. Chim. Acta 2013, 403, 110.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmslegtLo%3D&md5=0d7491aea168da2ee2e79ddb903e43aeCAS |
[15] G.-C. Guo, T. C. W. Mak, Chem. Commun. 1999, 813.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislelt70%3D&md5=b7d2eba5afea6277c7eebea53ba6989cCAS |
[16] (a) G.-C. Guo, G.-D. Zhou, Q.-G. Wang, T. C. W. Mak, Angew. Chem. Int. Ed. 1998, 37, 630.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlelurY%3D&md5=181a59159d6b6e946cdb638db1fc3d09CAS |
(b) G.-C. Guo, G.-D. Zhou, T. C. W. Mak, J. Am. Chem. Soc. 1999, 121, 3136.
| Crossref | GoogleScholarGoogle Scholar |
(c) Q.-M. Wang, T. C. W. Mak, J. Am. Chem. Soc. 2001, 123, 1501.
| Crossref | GoogleScholarGoogle Scholar |
(d) Q.-M. Wang, T. C. W. Mak, Angew. Chem. Int. Ed. 2001, 40, 1130.
| Crossref | GoogleScholarGoogle Scholar |
(e) Q.-M. Wang, T. C. W. Mak, Chem. Commun. 2001, 807.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. C. K. Hau, T. C. W. Mak, Chem. – Eur. J. 2013, 19, 5387.
| Crossref | GoogleScholarGoogle Scholar |
[17] G. M. Sheldrick, SADABS: Program for Empirical Absorption Correction of Area Detector Data 1996 (University of Göttingen: Göttingen, Germany).
[18] G. M. Sheldrick, SHELXTL 5.10 for Windows: Structure Determination Software Programs 1997 (Bruker Analytical X-Ray Systems, Inc.: Madison, WI).