Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Adventitiously Obtained Rare-Earth Peroxide Complexes and Their Structural Characterisation

Glen B. Deacon A , Craig M. Forsyth A , Dominique Freckmann A , Peter C. Junk B D , Kristina Konstas A , Jenny Luu A , Gerd Meyer C and Daniel Werner A
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.

B School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland 4811, Australia.

C Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, D-50939 Cologne, Germany.

D Corresponding author. Email: Peter.Junk@jcu.edu.au

Australian Journal of Chemistry 67(12) 1860-1865 https://doi.org/10.1071/CH14410
Submitted: 23 June 2014  Accepted: 29 July 2014   Published: 14 October 2014

Abstract

The structures of three adventitiously obtained peroxolanthanoid complexes have been determined, namely, [Yb2(Cp)4(μ-O)2/3(μ-O2)1/3(thf)2] (1) (Cp = cyclopentadienyl; thf = tetrahydrofuran), which has disorder between the bridging oxide and peroxide, [Nd2(o-PhPhForm)4(thf)4(μ-O2)] (2) (o-PhPhForm = N,N′-bis(2-phenylphenyl)formamidinate), and [Eu4(FForm)6(μ-OH)23-O2)2(μ-diglyme)2]·2diglyme (3) (FForm = N,N′-bis(2-fluorophenyl)formamidinate, diglyme = bis(2-methoxyethyl) ether). In the first two complexes, the peroxide bridges side-on between metals, whereas in the last complex, each peroxide bridges three metals through both oxygen atoms. The first complex was a single crystal amongst a bulk sample of [Yb(Cp)2(pzPh)(thf)] (pzPh = 2-(1′-pyrazolyl)phenyl), prepared by oxidation of dicyclopentadienylytterbium(ii) by bis(2-(1′-pyrazolyl)phenyl)mercury, the structure of which was also determined and showed distorted square planar stereochemistry for mercury.


References

[1]  A. I. Vogel, A Text-Book of Macro and Semimicro Qualitative Inorganic Analysis, 4th edition, 1954 (Longmans, Green & Co.: London, UK).

[2]  (a) D. C. Bradley, J. S. Ghotra, F. A. Hart, M. B. Hursthouse, P. R. Raithby, J. Chem. Soc. Chem. Commun. 1974, 40.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXhsFahsbg%3D&md5=1d3572b5a787bdd4d8e9b408e16a11d1CAS |
      (b) D. C. Bradley, J. S. Ghotra, F. A. Hart, M. B. Hursthouse, P. R. Raithby, J. Chem. Soc., Dalton Trans. 1977, 1166.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  M. P. Coles, P. B. Hitchcock, A. V. Khvostov, M. F. Lappert, Z. Li, A. V. Protchenko, Dalton Trans. 2010, 39, 6780.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslentbo%3D&md5=c723dcccfe2a0a89657c7f772d2cbe4bCAS | 20585693PubMed |

[4]  M. Niemeyer, Z. Anorg. Allg. Chem. 2002, 628, 647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlKltLg%3D&md5=80e5f1ace688c317c7d187821d0c9ba2CAS |

[5]  B. Neumüller, F. Weller, T. Gröb, K. Dehnicke, Z. Anorg. Allg. Chem. 2002, 628, 2365.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  D. Cui, T. Tang, J. Cheng, N. Hu, W. Chen, B. Huang, J. Organomet. Chem. 2002, 650, 84.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1CksLY%3D&md5=01d1b2f0f75699d21029974483561affCAS |

[7]  X. Zhang, G. R. Loppnow, R. McDonald, J. Takats, J. Am. Chem. Soc. 1995, 117, 7828.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXms1Gms7c%3D&md5=ab97b826c08d256d76e1aff4a3f6a97aCAS |

[8]  W. J. Gee, J. G. MacLellan, C. M. Forsyth, B. Moubaraki, K. S. Murray, P. C. Andrews, P. C. Junk, Inorg. Chem. 2012, 51, 8661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFagu77J&md5=e7cab82bf2ee5f4815c892c7036ab734CAS | 22857781PubMed |

[9]  J. C. Barnes, C. S. Blyth, J. D. Paton, I. G. B. Smith, Lanth. Actin. Res. 1990, 3, 181.

[10]  J. F. Corbey, M. Fang, J. W. Ziller, W. J. Evans, Inorg. Chem. in press, 10.1021/IC501753X

[11]  M. L. Cole, G. B. Deacon, C. M. Forsyth, P. C. Junk, K. Konstas, J. Wang, Chem. –Eur. J. 2007, 13, 8092.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Sju73I&md5=7982416a42be7b802fde8deb8c7762ebCAS | 17768759PubMed |

[12]  (a) A. Mustapha, J. Reglinski, A. R. Kennedy, Inorg. Chim. Acta 2009, 362, 1267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvF2rsLY%3D&md5=9941f62bf5410f65c285c1569fd65142CAS |
      (b) W. Radecka-Paryzek, V. Patroniak, M. Kubicki, Inorg. Chem. Commun. 2004, 7, 455.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  U. Baisch, S. Pagano, M. Zeuner, N. Barros, L. Maron, W. Schnick, Chem. –Eur. J. 2006, 12, 4785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmtlyjtro%3D&md5=2c1e08a6747774fc01c2921b0390cb4cCAS | 16528791PubMed |

[14]  H. Lueken, J. Schmitz, W. Lamberts, P. Hannibal, K. Handrick, Inorg. Chim. Acta 1989, 156, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitVeguro%3D&md5=334d0c2e4412a0ad59ca8cce4ea967d1CAS |

[15]  G. B. Deacon, G. Meyer, D. Stellfeldt, Eur. J. Inorg. Chem. 2000, 1061.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFaksLc%3D&md5=836da4e4e5e1cac4f4bf6025c0e1ca0bCAS |

[16]  C. Zhang, R. Liu, J. Zhang, Z. Chen, X. Zhou, Inorg. Chem. 2006, 45, 5867.
         | Crossref | GoogleScholarGoogle Scholar | 16841991PubMed |

[17]  Y. Li, C. Pi, J. Zhang, X. Zhou, Z. Chen, L. Weng, Organometallics 2005, 24, 1982.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlKgt74%3D&md5=d866c14fafc2104de458163eb8a7db24CAS |

[18]  M. H. Gubelmann, A. F. Williams, Struct. Bonding (Berlin, Ger.) 1983, 55, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXnsVSqtw%3D%3D&md5=321690bb9ff43055deecd192c6e2c38dCAS |

[19]  Table of Interatomic Distances and Configuration in Molecules and Ions (Ed. L. E. Sutton) 1965 (The Chemical Society: London, UK).

[20]  R. D. Shannon, Acta Crystallogr. 1976, A32, 155.

[21]  E. Iravani, B. Neumüller, Organometallics 2005, 24, 842.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt12qsA%3D%3D&md5=1bd7bb38e99b6526e3aa861f0c9c828dCAS |

[22]  R. Brownlee, A. Canty, M. Mackay, Aust. J. Chem. 1978, 31, 1933.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXmt1CgtLg%3D&md5=53457adbda00aa604bcb03aaeb16eb0cCAS |

[23]  A. J. Canty, B. M. Gatehouse, J. Chem. Soc., Dalton Trans. 1976, 2018.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXnt1Oqtw%3D%3D&md5=da19fc26042c35fe5a59802f34544e11CAS |

[24]  J. L. Atwood, D. E. Berry, S. R. Stobart, M. J. Zaworotko, Inorg. Chem. 1983, 22, 3480.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvFGisbs%3D&md5=070c17bbc142cf5a34a449bee8cc98ddCAS |

[25]  D. StC. Black, G. B. Deacon, G. L. Edwards, B. M. Gatehouse, Aust. J. Chem. 1993, 46, 1323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVOhsro%3D&md5=724fc6b9794f7026a8eb8cac7a4786f2CAS |

[26]  L. Pauling, The Nature of the Chemical Bond, 3rd edition, 1960 (Cornell University Press: Ithaca, NY).

[27]  D. Grdenić, Q. Rev., Chem. Soc. 1965, 19, 303.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  A. J. Canty, G. B. Deacon, Inorg. Chim. Acta 1980, 45, L225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhvFyjurc%3D&md5=2de2461d22473346ccfa94fde7af37fcCAS |

[29]  A. Bondi, J. Phys. Chem. 1964, 68, 441.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXls1Cgsg%3D%3D&md5=116107986ca72c813bccbb0748675625CAS |

[30]  R. M. Roberts, J. Am. Chem. Soc. 1949, 71, 3848.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3cXltlKg&md5=5707f7c38320c745870cf75cacdee852CAS |

[31]  G. B. Deacon, A. J. Koplick, T. D. Tuong, Polyhedron 1982, 1, 423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlsVSrtA%3D%3D&md5=c83e4ccd2c20a3c744f6622284ade712CAS |

[32]  G. B. Deacon, E. E. Delbridge, B. W. Skelton, A. H. White, Eur. J. Inorg. Chem. 1999, 751.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislOrtrs%3D&md5=459c445f0bd4940c0d95caec9d66b881CAS |

[33]  F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58, 380.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, J. P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=5d700bcffa3d3c4d2d31273ee0f0c918CAS | 12409628PubMed |

[35]  W. Kabsch, J. Appl. Crystallogr. 1993, 26, 795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXptFeltw%3D%3D&md5=9419610f4cb6fb932fb5c42cc5bcbb43CAS |

[36]  G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=e60798290754f1a9dfe9beb4e8e0b93dCAS |

[37]  L. J. B. O. V. Dolomanov, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFSnsbg%3D&md5=aaca26860e75b3466b3e308b609249aeCAS |