Trifluoromethylphenylcarbenes. Carbene-Carbene Interconversion on the Singlet Energy Surface and Rearrangement to Trifluorobenzocyclobutene, Trifluorostyrene, and Trifluoromethylfulvenallenes
Rodney J. Blanch A and Curt Wentrup A BA School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.
B Corresponding author. Email: wentrup@uq.edu.au
Australian Journal of Chemistry 68(1) 36-43 https://doi.org/10.1071/CH14097
Submitted: 25 February 2014 Accepted: 9 April 2014 Published: 15 May 2014
Abstract
The four isomeric α-, ortho-, meta-, and para-trifluoromethylphenylcarbenes were generated by photolysis of the corresponding 3-phenyl-3-trifluoromethyldiazirene 1 or the four isomeric trifluoromethylphenyldiazomethanes 2 and 4–6. The four corresponding triplet trifluoromethylphenylcarbenes 3 and 7–9 were observed by electron spin resonance (ESR) spectroscopy in Ar matrices at 14 K. The α- and ortho-carbenes 3 and 7 and the ortho- and para-carbenes 7 and 9 interconvert partially when generated by short-wavelength photolysis (350 nm) before intersystem crossing to the triplet states. The triplet states do not undergo further Carbene-Carbene interconversion. The interconversions are assumed to take place via the meta-trifluoromethylphenylcarbene 8. When the ortho- and para-carbenes are generated by long-wavelength photolysis (>450 nm), the discrete, non-interconverting triplet carbenes are observed in the ESR spectra. Flash vacuum thermolysis of the diazirene 1 at 500°C afforded a mixture of bis(trifluoromethyl)heptafulvalenes 11, bis(trifluoromethyl)stilbenes 12, and bis(trifluoromethyl)anthracenes 13, and the presence of their likely precursor(s), trifluoromethylcycloheptatetraene(s), was confirmed by a peak at 1830 cm–1 in the Ar matrix IR spectrum. In addition, at 700°C, four monomeric carbene rearrangement products were isolated and characterised, viz. 1,1,2-trifluorobenzocyclobutene 14, 1′,2′,2′-trifluorostyrene 15, and 1- and 2-trifluoromethylfulvenallenes 16 and 17.
References
[1] Fluorinated Heterocyclic Compounds (Ed. V. A. Petrov) 2009 (Wiley: Hoboken, NJ).[2] (a) S. Ritter, Chem. Eng. News 2012, 90, 7.
| Crossref | GoogleScholarGoogle Scholar |
(b) Z. Jin, G. B. Hammond, B. Xu, Aldrichim Acta 2012, 45, 67.
(c) Y. Li, L. Wu, H. Neumann, M. Beller, Chem. Commun. 2013, 49, 2628.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Chen, S. L. Buchwald, Angew. Chem. Int. Ed. 2013, 52, 11628.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Lishchynskyi, M. A. Novikov, E. Martin, E. C. Escudero-Adán, P. Novák, V. V. Grushin, J. Org. Chem. 2013, 78, 11126.
| Crossref | GoogleScholarGoogle Scholar |
(f) N. O. Ilchenko, P. G. Janson, K. J. Szabó, J. Org. Chem. 2013, 78, 11087.
| Crossref | GoogleScholarGoogle Scholar |
(g) Q. Wang, X. Dong, T. Xiao, L. Zhou, Org. Lett. 2013, 15, 4846.
| Crossref | GoogleScholarGoogle Scholar |
[3] R. J. Blanch, The Generation and Direct Observation of Selected Reactive Intermediates 1991, Ph.D. thesis, The University of Queensland.
[4] J. Brunner, H. Senn, F. M. Richards, J. Biol. Chem. 1980, 255, 3313.
| 1:CAS:528:DyaL3cXktVens7w%3D&md5=8b8bd004418326b7f34ef6bb1110a5a5CAS | 7364745PubMed |
[5] (a) S. A. Fleming, Tetrahedron 1995, 51, 12479.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVyrsr4%3D&md5=02a2c6096315169ffb0da647c13795d8CAS |
(b) A. Blencowe, W. Hayes, Soft Matter 2005, 1, 178.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. L. Vodovozova, Biochemistry (Moscow) 2007, 72, 1.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. Nakamoto, Y. Ueno, J. Org. Chem. 2014, 79,
| Crossref | GoogleScholarGoogle Scholar |
[6] A. Rühmann, C. Wentrup, Tetrahedron 1994, 50, 3785.
| Crossref | GoogleScholarGoogle Scholar |
[7] E. Wasserman, L. Barash, W. A. Yager, J. Am. Chem. Soc. 1965, 87, 4774.
[8] (a) W. W. Sander, J. Org. Chem. 1988, 53, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXjslShuw%3D%3D&md5=bf05865fd904f57bd4d3507413dbfad6CAS |
(b) P. S. Zuev, O. M. Nefedov, Russ. Chem. Rev. 1989, 58, 636.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. K. Mal’tsev, V. A. Korolov, O. M. Nefedov, Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1984, 33, 510.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) B. Noller, L. Poisson, R. Maksimenka, I. Fischer, J.-M. Mestdagh, J. Am. Chem. Soc. 2008, 130, 14908.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GnurnK&md5=e3159b9d053f0f94fe0551e200fc1259CAS | 18928260PubMed |
(b) B. Noller, L. Poisson, R. Maksimenka, O. Gobert, I. Fischer, J. M. Mestdagh, J. Phys. Chem. A 2009, 113, 3041.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. H. Fischer, P. Hemberger, I. Fischer, A. M. Rijs, ChemPhysChem 2010, 11, 3228.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) C. Wentrup, Top. Curr. Chem. 1976, 62, 173.
| 1:CAS:528:DyaE1cXls1Wg&md5=d2f864e0b49e7744d165cac902987d54CAS | 941142PubMed |
(b) W. M. Jones, Acc. Chem. Res. 1977, 10, 353.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. M. Jones, U. H. Brinker, in Pericyclic Reactions (Eds A. P. Marchand, A. E. Lehr) 1977, Vol. 1, Ch. 3, pp. 109–198 (Academic Press: New York, NY).
(d) C. Wentrup, in Reactive Intermediates (Ed. R. A. Abramovich) 1980, Vol. 1, Ch. 4, pp. 263–319 (Plenum: New York, NY).
(e) C. Wentrup, Reactive Molecules 1985 (Wiley-Interscience: New York, NY).
(f) R. A. Moss, M. Jones, Jr, Reactive Intermediates 1985, Vol. 3 (Wiley: New York, NY).
(g) C. Wentrup, in Methoden der Organischen Chemie (Houben-Weyl) (Ed. M. Regitz) 1989, Vol. E19b, pp. 824–976 (Thieme: Stuttgart).
[11] (a) W. J. Baron, M. Jones, P. P. Gaspar, J. Am. Chem. Soc. 1970, 92, 4739.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvFOhsb0%3D&md5=152252236a9391bb4f3b5e8d9170548cCAS |
(b) E. Hedaya, M. E. Kent, J. Am. Chem. Soc. 1971, 93, 3283.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Gleiter, W. Rettig, C. Wentrup, Helv. Chim. Acta 1974, 57, 2111.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. Mayor, C. Wentrup, J. Am. Chem. Soc. 1975, 97, 7467.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. P. Gaspar, J.-P. Hsu, S. Chari, M. Jones, Tetrahedron 1985, 41, 1479.
| Crossref | GoogleScholarGoogle Scholar |
(f) O. L. Chapman, R. J. McMahon, P. R. West, J. Am. Chem. Soc. 1984, 106, 7973.
| Crossref | GoogleScholarGoogle Scholar |
(g) O. L. Chapman, U. P. E. Tsou, J. Am. Chem. Soc. 1984, 106, 7974.
| Crossref | GoogleScholarGoogle Scholar |
(h) W. S. Trahanovsky, M. E. Scribner, J. Am. Chem. Soc. 1984, 106, 7976.
| Crossref | GoogleScholarGoogle Scholar |
(i) O. L. Chapman, C. J. Abelt, J. W. Johnson, C. L. Kreil, J.-P. LeRoux, R. J. McMahon, A. M. Mooring, P. R. West, J. Am. Chem. Soc. 1988, 110, 501.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) M. Kuzaj, H. Lüerssen, C. Wentrup, Angew. Chem. Int. Ed. 1986, 25, 480.
| Crossref | GoogleScholarGoogle Scholar |
(b) P. Kvaskoff, L. G. Bednarek, S. Pankarakshan, C. Wentrup, J. Org. Chem. 2005, 70, 7947.
| Crossref | GoogleScholarGoogle Scholar |
[13] C. Wentrup, K. Wilczek, Helv. Chim. Acta 1970, 53, 1459.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkvFymtb8%3D&md5=e51d3a23165e3071af403db4c7a17821CAS |
[14] P. L. Heinze, D. J. Burton, J. Org. Chem. 1988, 53, 2714.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktVKitrs%3D&md5=a905e39831511179ef50ea6f986a99bbCAS |
[15] Y. Zhang, G. Burdzinski, J. Kubicki, M. S. Platz, J. Am. Chem. Soc. 2009, 131, 9646.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Onsr8%3D&md5=79425ec8a3b19d2b75fcddcc1117e2b5CAS | 19552439PubMed |
[16] S. H. Smith, S. M. Forrest, D. C. Williams, M. F. Cabell, M. F. Acquavella, C. J. Abelt, Carbohydr. Res. 1992, 230, 289.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltFOltbs%3D&md5=2029dd75a3f35c1f0129077974e28182CAS | 1394302PubMed |
[17] X. Creary, J. Am. Chem. Soc. 1980, 102, 1611.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXktVOmt78%3D&md5=8154438e852d2398fb16b4b3cc9db4aaCAS |
[18] C. M. Geise, C. M. Hadad, J. Org. Chem. 2002, 67, 2532.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvValt7Y%3D&md5=6fd8670c411449fd3505c949b98ad12fCAS | 11950298PubMed |
[19] C. M. Geise, C. M. Hadad, J. Org. Chem. 2000, 65, 8348.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1elsL8%3D&md5=07c254eae58b7a9c8c36f140b56fb460CAS | 11101395PubMed |
[20] M. J. Regimbald-Krnel, C. Wentrup, J. Org. Chem. 2013, 78, 8789.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtF2rtbfI&md5=03f51202f452b606a9379443313287aaCAS | 23941300PubMed |
[21] (a) L. S. Kobrina, V. N. Kovtonyuk, Russ. Chem. Rev. 1988, 57, 62.
| Crossref | GoogleScholarGoogle Scholar |
(b) K. Uneyama, Organofluorine Chemistry 2006 (Blackwell: Oxford).
[22] C. Wentrup, E. Wentrup-Byrne, P. Müller, J. Chem. Soc., Chem. Commun. 1977, 210.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXltFOgur4%3D&md5=292acead2c49cd990ce18d3ed455bbb6CAS |
[23] O. L. Chapman, R. S. Sheridan, J.-P. LeRoux, J. Am. Chem. Soc. 1978, 100, 6245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXmtFClsbo%3D&md5=6b7dbc1feb2aad05a08f28723c99db7eCAS |
[24] J. Lundell, M. Räsänen, J. Mol. Struct. 1997, 436–437, 349.
| Crossref | GoogleScholarGoogle Scholar |
[25] (a) C. Wentrup, D. Kvaskoff, Aust. J. Chem. 2013, 66, 286.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksF2murk%3D&md5=2117085745291f10f9914a0a3795df41CAS |
(b) S. Torker, D. Kvaskoff, C. Wentrup, J. Org. Chem. 2014, 79, 1758.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Wentrup, Aust. J. Chem. 2014, 67, 1150.
| Crossref | GoogleScholarGoogle Scholar |
[26] (a) G. Shi, Y. Xu, J. Fluor. Chem. 1990, 46, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkt1aksrw%3D&md5=f9b37870cfcb6b98b4230dccacf67470CAS |
(b) G. Diderich, Helv. Chim. Acta 1972, 55, 2103.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. A. Shepard, S. E. Wentworth, J. Org. Chem. 1967, 32, 3197.
| Crossref | GoogleScholarGoogle Scholar |
[27] X. Creary, Org. Synth. 1986, 64, 207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhsFGqurs%3D&md5=6e552569eb891d92a981ea9f9dece879CAS |
[28] E. Wasserman, L. C. Snyder, W. A. Yager, J. Chem. Phys. 1964, 41, 1763.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXksFyqtrg%3D&md5=d48d58614ad81b0f37a367aefb7fef42CAS |
[29] R. J. Shozda, R. E. Putnam, J. Org. Chem. 1962, 27, 1557.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XktFSksrs%3D&md5=84e3e4df5b1d85146933b483f661191fCAS |
[30] For analogous 19F NMR data on 3,3,4-trifluorocyclobutenes, see: M. F. Kuehnel, P. Holstein, M. Kliche, J. Krüger, S. Matthies, D. Nitsch, J. Schutt, M. Sparenberg, D. Lentz, Chem. – Eur. J. 2012, 18, 10701.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVWisL0%3D&md5=94045a21f987fdd47e377f2a8634f0a6CAS | 22777749PubMed |
[31] (a) P. L. Heinze, D. J. Burton, J. Fluor. Chem. 1986, 31, 115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xmt1Gru7g%3D&md5=08fdda740dccb1ddd477cfa3575d1ad3CAS |
(b) A. Raghavanpillai, D. J. Burton, J. Org. Chem. 2004, 69, 7083.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Ohashi, H. Saijo, M. Shibata, S. Ogoshi, Eur. J. Org. Chem. 2013, 443.
| Crossref | GoogleScholarGoogle Scholar |