Hydrothermal Syntheses, Crystal Structures, and Luminescent Properties of Two MnII Coordination Polymers: From Two-Fold Interpenetrated pcu Topological Net to Polycatenated 2D+2D→3D Framework
Wenlong Liu A B , Mengqiang Wu B , Xueying Wang C , Wei Wang A , Dayu Liu A and Bing Wang D EA College of Biological Industry, Chengdu University, Chengdu 610106, China.
B School of Energy Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
C College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
D Institute for Chemical Engineering Technology, Yibin University, Yibin 644000, China.
E Corresponding author. Email: liuwenlong6666@126.com
Australian Journal of Chemistry 68(2) 322-326 https://doi.org/10.1071/CH14092
Submitted: 9 March 2014 Accepted: 5 May 2014 Published: 3 November 2014
Abstract
Using a hydrothermal synthesis, the self-assembly of MnII ions and 1,4-bis(1-imidazol-yl)-2,5-dimethyl benzene with two dicarboxylate ligands, 2-nitrobenzene-1,4-dicarboxylic acid (2-H2ata) and 5-methylbenzene-1,3-dicarboxylic acid (5-CH3-H2ip) constructed two interesting coordination polymers: [Mn(2-ata)(bimb)]n (1) and {[Mn(5-CH3-ip)(bimb)1.5]·2H2O}n (2), where bimb refers to 1,4-bis(1-imidazol-yl)-2,5-dimethyl benzene. Their structures were determined by single-crystal X-ray diffraction, elemental analysis, and infrared spectroscopy. Complex 1 exhibits a 2-fold interpenetrated pcu net. Complex 2 shows an unusual polycatenated 2D+2D→3D framework. In addition, the solid-state photoluminescent properties of 1 and 2 were investigated at room temperature.
References
[1] (a) M. O’Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOmtr7L&md5=6f196ec2df42b67ed0fd057a9d715fd1CAS | 21916513PubMed |
(b) I. A. V. Baburin, A. Blatov, L. Carlucci, G. Ciani, D. M. Proserpio, J. Solid State Chem. 2005, 178, 2452.
| Crossref | GoogleScholarGoogle Scholar |
(c) Q. X. Yang, X. Q. Chen, Z. J. Chen, Y. Hao, Y. Z. Li, Q. Y. Lu, H. G. Zheng, Chem. Commun. 2012, 48, 10016.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. Zhao, D. J. Timmons, D. Yuan, H. C. Zhou, Acc. Chem. Res. 2011, 44, 123.
| Crossref | GoogleScholarGoogle Scholar |
(e) V. A. Blatov, L. Carlucci, G. Ciani, D. M. Proserpio, CrystEngComm 2004, 6, 378.
| Crossref | GoogleScholarGoogle Scholar |
(f) G. L. Wen, Y. Y. Wang, Y. N. Zhang, G. P. Yang, A. Y. Fu, Q. Z. Shi, CrystEngComm 2009, 11, 1519.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) P. Dechambenoit, J. R. Long, Chem. Soc. Rev. 2011, 40, 3249.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVWkurY%3D&md5=ef5f692c511d11a4dc96d069fc730751CAS | 21298169PubMed |
(b) J. Li, J. Tao, R. B. Huang, L. S. Zheng, Inorg. Chem. 2012, 51, 5988.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Y. Qian, H. Zhou, A. H. Yuan, Y. Song, Cryst. Growth Des. 2011, 11, 5676.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. H. Jia, R. Y. Li, Z. M. Duan, S. D. Jiang, B. W. Wang, Z. M. Wang, S. Gao, Inorg. Chem. 2011, 50, 144.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Kurmoo, Chem. Soc. Rev. 2009, 38, 1353.
| Crossref | GoogleScholarGoogle Scholar |
(f) X. D. Zheng, Y. L. Hua, R. G. Xiong, J. Z. Ge, T. B. Lu, Cryst. Growth Des. 2011, 11, 302.
| Crossref | GoogleScholarGoogle Scholar |
(g) C. D. Wu, A. G. Hu, L. Zhang, W. B. Lin, J. Am. Chem. Soc. 2005, 127, 8940.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) M. P. Suh, H. J. Park, T. K. Prased, D. W. Lim, Chem. Rev. 2012, 112, 782.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GlsbjM&md5=66a6e1f324b833af5d094fc9bad1dc61CAS | 22191516PubMed |
(b) S. Barman, H. Furukawa, O. Blacque, K. Venkatesan, O. M. Yaghi, H. Berke, Chem. Commun. 2010, 46, 7981.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z. Q. Jiang, G. Y. Jiang, F. Wang, Z. Zhao, J. Zhang, Chem. – Eur. J. 2012, 18, 10525.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. T. He, J. Y. Tian, S. Y. Liu, G. F. Ouyang, J. P. Zhang, X. M. Chen, Chem. Sci. 2013, 4, 351.
| Crossref | GoogleScholarGoogle Scholar |
(e) L. Q. Han, Y. Yan, F. X. Sun, K. Cai, T. Borjigin, X. J. Zhao, F. Y. Qu, G. S. Zhu, Cryst. Growth Des. 2013, 13, 1458.
| Crossref | GoogleScholarGoogle Scholar |
(f) Y. Liu, J. R. Li, W. M. Verdegaal, T. F. Liu, H. C. Zhou, Chem. – Eur. J. 2013, 19, 5637.
| Crossref | GoogleScholarGoogle Scholar |
(g) G. Akiyama, R. Matsuda, H. Sato, A. Hori, M. Takata, S. Kitagawa, Microporous Mesoporous Mater. 2012, 157, 89.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) M. Yoon, R. Sriambalaji, M. Kim, Chem. Rev. 2012, 112, 1196.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOlt7rF&md5=012427b0e69adda6b02bee4a96939ec8CAS | 22084838PubMed |
(b) L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 2009, 38, 1248.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. B. Lalonde, O. K. Farha, K. A. Scheidt, J. T. Hupp, ACS Catal. 2012, 2, 1550.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. S. Jeong, Y. B. Go, S. M. Shin, S. J. Lee, J. Kim, O. M. Yaghi, N. Jeong, Chem. Sci. 2011, 2, 877.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) Y. J. Cui, Y. F. Yue, G. D. Qian, B. L. Chen, Chem. Rev. 2012, 112, 1126.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKitr8%3D&md5=cfe721a8945f2af5dfd799e8a6f818e8CAS |
(b) M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Yang, F. Wang, Y. X. Tan, Y. Kang, T. H. Li, J. Zhang, Chem. – Asian J. 2012, 7, 1069.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. J. Sie, Y. J. Chang, P. W. Cheng, P. T. Kuo, C. W. Yeh, C. F. Cheng, J. D. Chen, J. C. Wang, CrystEngComm 2012, 14, 5505.
| Crossref | GoogleScholarGoogle Scholar |
(e) G. M. Sun, Y. M. Song, Y. Liu, X. Z. Tian, H. X. Huang, Y. Zhu, Z. J. Yuan, X. F. Feng, M. B. Luo, S. J. Liu, W. Y. Xu, F. Luo, CrystEngComm 2012, 14, 5714.
| Crossref | GoogleScholarGoogle Scholar |
(f) J. Yang, J. F. Ma, Y. Y. Liu, S. R. Batten, CrystEngComm 2009, 11, 151.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) X. L. Wang, C. Qin, E. B. Wang, L. Xu, Z. M. Su, C. W. Hu, Angew. Chem. Int. Ed. 2004, 43, 5036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlKrsbs%3D&md5=28c33466a44ca592e17edf15aa388e29CAS |
(b) X. L. Wang, C. Qin, E. B. Wang, Y. G. Li, Z. M. Su, Chem. Commun. 2005, 5450.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Carlucci, G. Ciani, M. Maggini, D. M. Proserpio, Cryst. Growth Des. 2008, 8, 162.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. Vishweshwar, D. A. Beauchamp, M. J. Zaworotko, Cryst. Growth Des. 2006, 6, 2429.
| Crossref | GoogleScholarGoogle Scholar |
(e) L. Carlucci, G. Ciani, D. M. Proserpio, Chem. Commun. 2004, 380.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) S. R. Batten, R. Robson, Angew. Chem. Int. Ed. 1998, 37, 1460.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. R. Batten, CrystEngComm 2001, 3, 67.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Carlucci, G. Ciani, D. M. Proserpio, Coord. Chem. Rev. 2003, 246, 247.
| Crossref | GoogleScholarGoogle Scholar |
(d) I. A. Baburin, V. A. Blatov, L. Carlucci, G. Ciani, D. M. Proserpio, Cryst. Growth Des. 2008, 8, 519.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) H. D. Guo, D. F. Qiu, X. M. Guo, S. R. Batten, H. J. Zhang, CrystEngComm 2009, 11, 2611.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVeitbvF&md5=a032053d5d7f1abd660c0c12faed7d3bCAS |
(b) Y. Qi, F. Luo, Y. X. Che, J. M. Zheng, Cryst. Growth Des. 2008, 8, 606.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. H. Cui, J. R. Li, J. L. Tian, X. H. Bu, S. R. Batten, Cryst. Growth Des. 2005, 5, 1775.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) Y. Qi, F. Luo, S. R. Batten, Y. X. Che, J. M. Zheng, Cryst. Growth Des. 2008, 8, 2806.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFGqt7k%3D&md5=daa850396e513d8e875047102f81d192CAS |
(b) Z. H. Zhang, M. Du, CrystEngComm 2008, 10, 1350.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Luo, Y. T. Yang, Y. X. Che, J. M. Zheng, CrystEngComm 2008, 10, 981.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. M. Chen, G. F. Liu, Chem. – Eur. J. 2002, 8, 4811.
| Crossref | GoogleScholarGoogle Scholar |
(e) T. H. Noh, Y. J. Choi, Y. K. Ryu, Y. A. Lee, O. S. Jung, CrystEngComm 2009, 11, 2371.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) C. Qin, X. L. Wang, L. Carlucci, M. L. Tong, E. B. Wang, C. W. Hu, L. Xu, Chem. Commun. 2004, 1876.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVKmtLk%3D&md5=840b24f0a747083e63bced32bfdf128aCAS |
(b) J. Yang, J. F. Ma, S. R. Batten, Z. M. Su, Chem. Commun. 2008, 2233.
| Crossref | GoogleScholarGoogle Scholar |
(c) Q. X. Yao, Z. F. Ju, X. H. Jin, J. Zhang, Inorg. Chem. 2009, 48, 1266.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. Wu, H. Y. Liu, J. Yang, B. Liu, J. F. Ma, Y. Y. Liu, Y. Y. Liu, Cryst. Growth Des. 2011, 11, 2317.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. L. Hu, H. H. Zou, X. B. Zhao, Y. Mi, C. L. Luo, Y. X. Wang, CrystEngComm 2013, 15, 1068.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) F. Guo, B. Y. Zhu, M. L. Liu, X. L. Zhang, J. Zhang, J. P. Zhao, CrystEngComm 2013, 15, 6191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFWktLrO&md5=73003fd16d225ffd5e992fda99c9207dCAS |
(b) F. Guo, B. Y. Zhu, G. L. Xu, M. M. Zhang, X. L. Zhang, J. Zhang, J. Solid State Chem. 2013, 199, 42.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. L. Xu, F. Guo, Inorg. Chem. Commun. 2013, 27, 146.
| Crossref | GoogleScholarGoogle Scholar |
(d) N. N. Ma, F. Guo, J. Inorg. Organomet. Polym. Mater. 2013, 23, 1177.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) R. Q. Zou, R. Q. Zhong, L. Jiang, Y. Yamada, N. Kuriyama, Q. Xu, Chem. – Asian J. 2006, 1, 536.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlejsLfK&md5=f598b61557f79948d92bce6667f096ebCAS | 17441091PubMed |
(b) R. Q. Zou, R. Q. Zhong, M. Du, D. S. Pandey, Q. Xu, Cryst. Growth Des. 2008, 8, 452.
| Crossref | GoogleScholarGoogle Scholar |
[13] F. Guo, F. Wang, H. Yang, X. L. Zhang, J. Zhang, Inorg. Chem. 2012, 51, 9677.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12isr%2FJ&md5=6b2a0ec2371703a16f991b6b62bff500CAS | 22946624PubMed |
[14] (a) V. A. Blatov, IUCr CompComm Newsl. 2006, 7, 4.
(b) V. A. Blatov, A. P. Shevchenko, V. N. Serezhkin, J. Appl. Crystallogr. 2000, 33, 1193.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. A. Blatov, M. O’Keeffe, D. M. Proserpio, CrystEngComm 2010, 12, 44.See also http://www.topos.ssu.Samara.ru.
| Crossref | GoogleScholarGoogle Scholar |
[15] Bruker AXS, SAINT Software Reference Manual 1998 (Bruker AXS: Madison, WI)
[16] G. M. Sheldrick, SHELXTL NT, version 5.1; Program for Solution and Refinement of Crystal Structures 1997 (University of Göttingen: Göttingen)