MnII-Doped ZnS Quantum Dots Modified with Tiopronin for Mercury(II) Detection
Xin Liu A , Xun-Shou Zhan A , Fang-Ying Wu A B and Li-Hua Ma AA Department of Chemistry, Nanchang University, Nanchang 330031, China.
B Corresponding author. Email: fywu@ncu.edu.cn
Australian Journal of Chemistry 68(2) 315-321 https://doi.org/10.1071/CH14016
Submitted: 11 January 2014 Accepted: 1 May 2014 Published: 3 July 2014
Abstract
The simple, low-cost, and rapid detection of aqueous mercuric ions remains a challenge for environmental and biological monitoring and protection. We demonstrate herein a new analytical method to detect Hg2+ based on MnII-doped ZnS quantum dots modified with tiopronin. At pH 7.2, Hg2+ causes the fluorescence intensity of quantum dots modified with tiopronin to decrease linearly proportionally with the concentration of Hg2+. This method is non-responsive to general metal ions, surfactants, and some biomacromolecules even though their concentrations were greater than that of Hg2+. Therefore, a sensitive and selective fluorescence assay for Hg2+ with a low limit of detection (8.9 × 10–9 mol L–1) has been developed and its successful application in real samples such as tap water, lake water, and human serum are also discussed in detail.
References
[1] D. W. Boening, Chemosphere 2000, 40, 1335.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1yru7k%3D&md5=d649af369b136e9b2ddf8424afce1fa4CAS | 10789973PubMed |
[2] World Health Organization Guidelines for Drinking-Water Quality, Third Edition Incorporating the First and Second Addenda 2008, p. 492 (WHO Press: Geneva).
[3] (a) Y. Gao, Z. Shi, Z. Long, P. Wu, C. Zheng, X. Hou, Microchemical 2012, 103, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1WgurY%3D&md5=02bb185c393f21f5733fab2a42653dbfCAS |
(b) Z. Špirić, I. Vučković, T. Stafilov, V. Kušan, M. Frontasyeva, Arch. Environ. Contam. Toxicol. 2013, 65, 33.
| Crossref | GoogleScholarGoogle Scholar |
[4] L. R. Drennan-Harris, S. Wongwilawan, J. F. Tyson, J. Anal. At. Spectrom. 2013, 28, 259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFWhtw%3D%3D&md5=20f29166a052247d1ba79ec0445c8f53CAS |
[5] C. Y. Wu, C. C. Lin, T. M. Fu, C. R. Yang, Y. P. Yen, Aust. J. Chem. 2010, 63, 329.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVagtr0%3D&md5=99afec1a05ae393381413cca1ca9d278CAS |
[6] (a) A. Bist, S. J. Cho, N. Ahmed, J. Incl. Phenom. Macrocycl. Chem. 2013, 77, 75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Cqtr%2FF&md5=978e4a04cf76ad8acea62559b44b9619CAS |
(b) T. H. Chen, C. Y. Lu, W. L. Tseng, Talanta 2013, 117, 258.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Chen, C. Zhu, Z. Yang, J. Li, Y. Jiao, W. He, J. Chen, Z. Guo, Chem. Commun. 2012, 5094.
| Crossref | GoogleScholarGoogle Scholar |
[7] M. F. Frasco, N. Chaniotakis, Sensors 2009, 9, 7266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKrs73J&md5=abe8b57ed9c7ba19174b4915ebebe449CAS | 22423206PubMed |
[8] P. Wu, T. Zhao, S. Wang, X. Hou, Nanoscale 2014, 6, 43.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2hs7jN&md5=8d4516c622cde76a7116124fddc7dc79CAS | 24270674PubMed |
[9] A. N. Liang, L. Wang, H. Q. Chen, B. B. Qian, B. Ling, J. Fu, Talanta 2010, 81, 438.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisF2isb0%3D&md5=76829bdad765cbd2e2b4e1af89448ba8CAS | 20188943PubMed |
[10] M. Koneswaran, R. Narayanaswamy, Sens. Actuators B Chem. 2009, 139, 91.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls12qs7w%3D&md5=87b75b3226459493ed590daa5897db1dCAS |
[11] Z. X. Cai, H. Yang, Y. Zhang, X. P. Yan, Anal. Chim. Acta 2006, 559, 234.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ymur0%3D&md5=668fd90bd475176ffbe702b96582f2faCAS |
[12] B. B. Campos, M. Algarra, B. Alonso, C. M. Casado, J. C. G. Esteves da Silva, Analyst 2009, 134, 2447.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVaju7vE&md5=13d25f20a96e93694a14c5347f20e4cbCAS | 19918615PubMed |
[13] X. Zhu, Z. Zhao, X. Chi, J. Gao, Analyst 2013, 138, 3230.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVygsbs%3D&md5=a794be4627780f85d0170800d7851fb9CAS | 23604099PubMed |
[14] J. Pei, H. Zhua, X. Wang, H. Zhang, X. Yang, Anal. Chim. Acta 2012, 757, 63.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSrsbjM&md5=756075a9fb48ed073fab784685fe0a69CAS | 23206397PubMed |
[15] J. L. Duan, L. X. Song, J. H. Zhan, Nano. Res. 2009, 2, 61.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFSjtrzJ&md5=93ce1158ada0879a06d6c50993266d7aCAS |
[16] T. Yang, Q. He, Y. Liu, C. Zhu, D. Zhao, J. Anal. Methods Chem. 2013, 2013, 1.
| Crossref | GoogleScholarGoogle Scholar |
[17] Z. B. Shang, Y. Wang, W. J. Jin, Talanta 2009, 78, 364.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1OmsLo%3D&md5=ab456972823040ef6822c36b775cc0ceCAS | 19203596PubMed |
[18] D. V. Freitas, J. M. M. Dias, S. B. G. Passos, G. C. S. de Souza, E. T. Neto, M. Navarro, Green Chem. 2014, 16, 3247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXos1ersL4%3D&md5=3b482242cceef033262015fd4783439dCAS |
[19] B. Cao, C. Yuan, B. Liu, C. Jiang, G. Guan, M. Y. Han, Anal. Chim. Acta 2013, 786, 146.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFKlsro%3D&md5=61d558b1c32c12a9ecbe564186b36df9CAS | 23790304PubMed |
[20] C. Yuan, K. Zhang, Z. Zhang, S. Wang, Anal. Chem. 2012, 84, 9792.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1WltrrF&md5=aa08bbac5fd9a0b3a4c4cb9608715fbcCAS | 23121315PubMed |
[21] W. B. Cai, A. R. Hsu, Z. B. Li, X. Y. Chen, Nanoscale Res. Lett. 2007, 2, 265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslegsb0%3D&md5=fae763d715dd96deecc63e92d28f6252CAS |
[22] (a) R. Y. Tu, B. H. Liu, Z. Y. Wang, D. M. Gao, F. Wang, Q. L. Fang, Z. P. Zhang, Anal. Chem. 2008, 80, 3458.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFSltLk%3D&md5=68daab5d1eab34b60ee11efca5ec47dcCAS |
(b) W. Y. Xie, W. T. Huang, H. Q. Luo, N. B. Li, Analyst 2012, 137, 4651.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Geszke-Moritz, H. Piotrowska, M. Murias, L. Balan, M. Moritz, J. Lulek, R. Schneider, J. Mater. Chem. B 2013, 1, 698.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. Tan, Y. Li, Y. Tang, C. Kang, Z. Yu, S. Xu, J. Nanosci. Nanotechnol. 2012, 12, 7788.
| Crossref | GoogleScholarGoogle Scholar |
[23] F. Capasso, Agents Actions 1981, 11, 741.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtlGmsL8%3D&md5=042c37d536b77ce27c92f78470a84cc3CAS | 7340466PubMed |
[24] Y. Q. Wang, C. Ye, Z. H. Zhu, Y. Z. Hu, Anal. Chim. Acta 2008, 610, 50.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFOqtb4%3D&md5=a3e1d65edbc8341e474609334424e994CAS | 18267139PubMed |
[25] (a) J. M. de la Fuente, M. Fandel, C. C. Berry, M. Riehle, L. Cronin, G. Aitchison, A. S. G. Curtis, ChemBioChem 2005, 6, 989.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsVSqtLs%3D&md5=e0f2180aa764b4111bf0bad0d570a223CAS | 15852337PubMed |
(b) Y. F. Liu, J. S. Yu, J. Colloid Interface Sci. 2009, 333, 690.
| Crossref | GoogleScholarGoogle Scholar |
[26] L. Guo, S. Chen, L. Chen, Colloid Polym. Sci. 2007, 285, 1593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Gjtb3I&md5=02c19e79aa46cbc630bf2470f36f5627CAS |
[27] J. F. Suyver, S. F. Wuister, J. J. Kelly, A. Meijerink, Nano Lett. 2001, 1, 429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls12rsbw%3D&md5=3f6f13f1d6508ddaaf412a1605d7a677CAS |
[28] L. X. Cao, J. H. Zhang, S. L. Ren, S. H. Huang, Appl. Phys. Lett. 2002, 80, 4300.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFGgtLg%3D&md5=746e0bf574c3a87c0b9aeef0f8ba1debCAS |
[29] D. Jiang, L. Cao, G. Su, W. Liu, H. Qu, Y. Sun, B. Dong, Mater. Chem. Phys. 2009, 115, 795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVygu7s%3D&md5=d77bbd7edd5170f7ad7e8a992bc51c4bCAS |
[30] X. Yang, Z. T. Pan, Y. Ma, J. Anal. Sci 2003, 19, 588.
| 1:CAS:528:DC%2BD2cXnvFKrsg%3D%3D&md5=f16181f9cf549929159cc857137f66c6CAS |
[31] H. Gonçalves, C. Mendonça, J. C. G. Esteves da Silva, J. Fluoresc. 2009, 19, 141.
| Crossref | GoogleScholarGoogle Scholar | 18626755PubMed |
[32] E. M. Ali, Y. Zheng, H. H. Yu, J. Y. Ying, Anal. Chem. 2007, 79, 9452.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlSgur%2FE&md5=2e7b9be1d563de49a146958b2e3296c0CAS | 18004817PubMed |
[33] J. L. Chen, Y. C. Gao, Z. B. Xu, G. H. Wu, Y. C. Chen, C. Q. Zhu, Anal. Chim. Acta 2006, 577, 77.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslGgtLc%3D&md5=863880980413f0bef8fc1d99bc396711CAS |
[34] C. Foti, O. Giuffre, G. Lando, S. Sammartano, J. Chem. Eng. Data 2009, 54, 893.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslSquw%3D%3D&md5=9edd96304efc842352c96c1d1e900a38CAS |
[35] P. W. Ayers, R. G. Parr, R. G. Pearson, J. Chem. Phys. 2006, 124, 194107.
| Crossref | GoogleScholarGoogle Scholar | 16729803PubMed |