Reaction of 2-Pyridylmethylthiourea Derivatives with [(en)2Co(OSO2CF3)2]+ Induces Hypodentate Coordination of an Ethylenediamine Ligand
Lee Roecker A B C F , Alison Anderson A , Aladdin Al-Haddad A , Cawas Engineer A , Joan Fetty A , Charles Kiaza A , Nicholas Noinaj A , Nathan L. Coker D , Jeanette Krause D and Sean Parkin E FA Department of Chemistry, Berea College, Berea, KY 40404, USA.
B Department of Chemistry, Bates College, Lewiston, ME 04240, USA.
C Department of Chemistry, Northern Michigan University, Marquette, MI 49855, USA.
D Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA.
E Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
F Corresponding authors. Email: lroecker@nmu.edu; s.parkin@uky.edu (crystallographic work)
Australian Journal of Chemistry 67(6) 933-943 https://doi.org/10.1071/CH14029
Submitted: 21 January 2014 Accepted: 12 February 2014 Published: 26 March 2014
Abstract
Pyridylmethylthiourea derivatives coordinate with [(en)2Co(OSO2CF3)2]+ in a tridentate manner resulting in the formation of a hypodentate ethylenediamine ligand. Four ligands were studied: N-(R)phenyl-N′-2-pyridylmethylthiourea (R = H (1a), CH3 (1b), OCH3 (1c)) and N-benzyl-N′-2-pyridylmethylthiourea (2). These bind through the sulfur, a deprotonated exo nitrogen, and the pyridyl nitrogen atoms forming four and five-membered rings, respectively. The ligand also coordinates in a bidentate manner through the sulfur and deprotonated endo or exo nitrogen atoms, forming two additional coordination isomers. The solid state structure (X-ray) of one of the bidentate isomers of Co-1b2+ (endo isomer) shows that the coordinated thiourea sulfur induces a structural trans effect of 0.035 Å on the trans Co–N bond while that of the tridentate isomer of Co-1a3+ confirms the coordination mode of the ligand and the presence of a protonated hypodentate ethylenediamine ligand as suggested by 1H and 13C NMR spectroscopy.
References
[1] L. Roecker, M. Aiyegbo, A. Al-Haddad, E. Fletcher, R. Kc, J. Hurst, T. Lane, R. Larsen, N. Noinaj, S. L. Teh, S. K. Wade, S. Parkin, Aust. J. Chem. 2013, 66, 944.| Crossref | GoogleScholarGoogle Scholar |
[2] L. Roecker, J. Akande, L. N. Elam, I. Gagua, B. W. Helton, M. C. Prewitt, A. M. Sargeson, J. H. Swango, A. C. Willis, T. Xin, J. Xu, Inorg. Chem. 1999, 38, 1269.
| Crossref | GoogleScholarGoogle Scholar | 11670912PubMed |
[3] D. R. Richardson, D. S. Kalinowski, V. Richardson, P. C. Sharpe, D. B. Lovejoy, M. Islam, P. V. Bernhardt, J. Med. Chem. 2009, 52, 1459.
| Crossref | GoogleScholarGoogle Scholar | 19216562PubMed |
[4] E. C. Constable, Prog. Inorg. Chem. 1994, 42, 67.
| Crossref | GoogleScholarGoogle Scholar |
[5] R. L. Fanshawe, A. Mobinikhaledi, C. R. Clark, A. G. Blackman, Inorg. Chim. Acta 2000, 307, 27.
| Crossref | GoogleScholarGoogle Scholar |
[6] M. D. Alexander, C. A. Spillert, Inorg. Chem. 1970, 9, 2344.
| Crossref | GoogleScholarGoogle Scholar |
[7] D. A. House, P. J. Steel, Inorg. Chim. Acta 1999, 288, 53.
| Crossref | GoogleScholarGoogle Scholar |
[8] D. B. Cordes, R. T. Tarak, S. M. McDonald, S. A. Cameron, C. R. Clark, A. G. Blackman, Polyhedron 2013, 52, 1227.
| Crossref | GoogleScholarGoogle Scholar |
[9] D. X. West, J. K. Swearingen, A. K. Hermetet, L. J. Ackerman, C. Presto, J. Mol. Struct. 2000, 522, 27. and references therein
| Crossref | GoogleScholarGoogle Scholar |
[10] Z. Weiqun, L. Baolong, Z. Liming, D. Jiangang, Z. Yong, L. Lude, Y. Xujie, J. Mol. Struct. 2004, 690, 145.
| Crossref | GoogleScholarGoogle Scholar |
[11] Z. Weiqun, L. Kuisheng, Z. Yong, L. Lu, J. Mol. Struct. 2003, 657, 215.
| Crossref | GoogleScholarGoogle Scholar |
[12] H. Arslan, U. Flörke, N. Külcü, Turk. J. Chem. 2004, 28, 673.
[13] L. R. Gahan, T. M. Donlevey, T. W. Hambley, Inorg. Chem. 1990, 29, 1451. and references therein
| Crossref | GoogleScholarGoogle Scholar |
[14] C. G. Barry, E. C. Turney, C. S. Day, G. Saluta, G. L. Kucera, U. Bierbach, Inorg. Chem. 2002, 41, 7159.
| Crossref | GoogleScholarGoogle Scholar | 12495358PubMed |
[15] R. C. Elder, L. R. Florian, R. E. Lake, A. M. Yacynych, Inorg. Chem. 1973, 12, 2690.
| Crossref | GoogleScholarGoogle Scholar |
[16] M. H. Dickman, R. J. Doedens, E. Deutsch, Inorg. Chem. 1980, 19, 945.
| Crossref | GoogleScholarGoogle Scholar |
[17] D. P. Fairlie, W. G. Jackson, G. M. McLaughlin, Inorg. Chem. 1989, 28, 1983.
| Crossref | GoogleScholarGoogle Scholar |
[18] F. D. Sancilio, L. F. Druding, D. M. Lukaszewski, Inorg. Chem. 1976, 15, 1626.
| Crossref | GoogleScholarGoogle Scholar |
[19] Bruker-AXS, SAINT/SAINT-Plus 2008 (Bruker-AXS: Madison, WI).
[20] G. M. Sheldrick, SADABS 1996 (University of Goettingen: Goettingen).
[21] S. Parkin, B. Moezzi, H. Hope, J. Appl. Crystallogr. 1995, 28, 53.
| Crossref | GoogleScholarGoogle Scholar |
[22] G. M. Sheldrick, Acta Crystallogr. 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar |
[23] L. Pu, T. Hasegawa, S. Parkin, H. Taube, J. Am. Chem. Soc. 1992, 114, 7609.
| Crossref | GoogleScholarGoogle Scholar |
[24] T. Hasegawa, A. Li, S. Parkin, H. Hope, R. K. McMullan, T. F. Koetzle, H. Taube, J. Am. Chem. Soc. 1994, 116, 4352.
| Crossref | GoogleScholarGoogle Scholar |
[25] International Tables for Crystallography, Vol. C: Mathematical, Physical and Chemical Tables (Ed. A. J. C. Wilson) 1992 (Kluwer Academic Publishers: Dordrecht).
[26] A. L. Spek, J. Appl. Cryst. 2003, 36, 7.
| Crossref | GoogleScholarGoogle Scholar |
[27] S. Parkin, Acta Crystallogr. 2000, 56, 157.
| Crossref | GoogleScholarGoogle Scholar |