Influence of Chemically Inert Cations on the Hydrogen-bond Network in the Bray-Liebhafsky Oscillatory Reaction
Dragomir R. Stanisavljev A B , Ivana Ž. Ljubić A and Maja C. Milenković AA Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, PO Box 47, 11158, Belgrade, Serbia.
B Corresponding author. Email: dragisa@ffh.bg.ac.rs
Australian Journal of Chemistry 67(6) 944-948 https://doi.org/10.1071/CH14021
Submitted: 15 January 2014 Accepted: 12 February 2014 Published: 10 April 2014
Abstract
The influence of the chemically inert alkali metal cations on the Bray-Liebhafsky oscillatory reaction dynamics was investigated by the addition of the same amount of various sulfates to the reaction mixture. Beside the expected changes related to the altered acidity of the sulfuric acid solution, subtle changes dependent on cation dimensions were noticed. Larger cations have more impact on the Bray-Liebhafsky reaction dynamics. Analysing the mean ionic activity of salts, it is suggested that the effects may be related to the altered extent of water hydrogen bonding and specific role of bulk water in the reaction mechanism.
References
[1] W. C. Bray, J. Am. Chem. Soc. 1921, 43, 1262.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB3MXitV2itA%3D%3D&md5=0b18902299fcd3b1043843a2ef70703fCAS |
[2] W. C. Bray, H. A. Liebhafsky, J. Am. Chem. Soc. 1931, 53, 38.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3MXhtlaqtQ%3D%3D&md5=0ee58646c1e6e8328a16f9cf6fb46b38CAS |
[3] H. A. Liebhafsky, J. Am. Chem. Soc. 1931, 53, 2074.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3MXjsFSluw%3D%3D&md5=c356eab57efd8624fd520d02b468e4c5CAS |
[4] H. A. Liebhafsky, J. Am. Chem. Soc. 1931, 53, 896.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3MXisVShsw%3D%3D&md5=fa4aaf2ca3a2f7630f0aadf3edbad5e2CAS |
[5] I. R. Epstein, J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics 1998 (Oxford University Press: New York).
[6] P. B. Belousov, Periodiceski Deistvujuscaja Reakcija i ee Mehanizm 1951 (Izd-vo GGU: Gorkij). [In Russian]
[7] A. Goldbeter, Biological Chemical Oscillations and Cellular Rhythms 2002 (Cambridge University Press: Cambridge, UK).
[8] M. Eiswirth, A. Freund, J. Ross, Adv. Chem. Phys. 1991, 80, 127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xpt1aitA%3D%3D&md5=9f1520a0167e563cde2f5f06762ad465CAS |
[9] A. J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution 1985 (Dekker: New York).
[10] H. A. Liebhafsky, J. Am. Chem. Soc. 1932, 54, 3504.
[11] H. A. Liebhafsky, J. Am. Chem. Soc. 1932, 54, 1792.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA38XjsFyluw%3D%3D&md5=8a0122f8ffc57f7ac6b1dec015ecc01fCAS |
[12] S. Furrow, J. Phys. Chem. 1987, 91, 2129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhsVCksL0%3D&md5=348a485e6455a7c7bafff1424ef35136CAS |
[13] R. D. Stanisavljev, J. Phys. Chem. A 2010, 114, 725.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsValtLnO&md5=eebcc2b4785bdaf121c24323f3cb29a3CAS |
[14] I. Matsuzaki, J. Woodson, H. A. Liebhafsky, Bull. Chem. Soc. Jpn. 1970, 43, 3317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXjsVyitw%3D%3D&md5=fc4bbdce0eb44ed78ac5e2b16e3c53f7CAS |
[15] D. Stanisavljev, V. Vukojević, J. Serb. Chem. Soc. 1995, 60, 1125.
| 1:CAS:528:DyaK28XjtFaisA%3D%3D&md5=ea1ce5a5ca8f2cad7ac417d37d2ca53fCAS |
[16] D. Stanisavljev, N. Begović, Z. Žujović, D. Vučelić, G. Bačić, J. Phys. Chem. A 1998, 102, 6883.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvF2mur0%3D&md5=117b859b6ec23d7c8a0eb5f1d54daa3aCAS |
[17] D. Stanisavljev, N. Begović, V. Vukojević, J. Phys. Chem. A 1998, 102, 6887.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvF2murw%3D&md5=b75d126c68f38c707141494fb571b088CAS |
[18] D. Stanisavljev, V. Vukojević, J. Phys. Chem. A 2002, 106, 5618.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1OmsLk%3D&md5=a4c2b1b2d3fdb8882bdf67c382abab7aCAS |
[19] D. R. Stanisavljev, A. R. Đorđević, V. D. Likar-Smiljanić, ChemPhysChem 2004, 5, 140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFKqtbc%3D&md5=f300b35b4839e669175dc4e3769f1fadCAS | 14999858PubMed |
[20] D. Stanisavljev, A. R. Djordjević, V. D. Likar-Smiljanić, Chem. Phys. Lett. 2005, 412, 420.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXot1Cgs78%3D&md5=e613181167033e502dbf5c83656acdbbCAS |
[21] D. Stanisavljev, A. R. Đorđević, V. D. Likar-Smiljanić, Chem. Phys. Lett. 2006, 423, 59.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlGkt70%3D&md5=0fca4a6e75098e2ba9123e1b8a2debbcCAS |
[22] Y. Marcus, Chem. Rev. 2009, 109, 1346.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1eltL0%3D&md5=0b336e0aeeeeb568573ef352ba8d3cf8CAS | 19236019PubMed |
[23] D. A. Lide, CRC Handbook of Chemistry and Physics 2003 (CRC Press, Boca Raton, FL).
[24] J. O. Bockris, Modern Electrochemistry 1970 (Plenum Press: New York).