Dawson-type Polyoxometalate Covalently Linked to Naphthalene: Synthesis, Characterisation and Material Properties
Jing Ni A , Zhou Zhou A , Li Liu A D , Shi-Zhong Liu A , Fa-Bao Li A C , Guang-Hua Li B and Zu-Liang Du CA Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
B State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
C Key Laboratory of Special Functional Materials, Henan University, Kaifeng 475001, China.
D Corresponding authors. Email: liulihubei@hubu.edu.cn; lfb0615@hubu.edu.cn
Australian Journal of Chemistry 68(1) 106-112 https://doi.org/10.1071/CH14028
Submitted: 22 January 2014 Accepted: 31 March 2014 Published: 2 June 2014
Abstract
A novel covalently linked organic–polyoxometalate (POM) hybrid compound [N(C4H9)4]6[α2-P2W17O61{P(O)C6H4C≡CC10H7}2] (NOD) was prepared by Sonogashira coupling reaction of 1-iodonaphthalene with (NBu4)6[α2-P2W17O61{P(O)C6H4C≡CH}2] (OD), and characterised by NMR, infrared spectroscopy, UV–vis spectroscopy, fluorescence spectroscopy, and cyclic voltammetry. The UV–vis and luminescence spectra of NOD showed delocalisation and electron transfer in the hybrid system. The redox potential of the polyanion could be tuned by grafting organic composites on it. NOD displayed interesting electrical conductivity behaviours, photovoltage response, and photocatalytic activity.
References
[1] M. T. Pope, A. Müller, Angew. Chem. 1991, 103, 56.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXptlyksw%3D%3D&md5=a53e1b7e611fda368df5a346f6d174caCAS |
[2] M. T. Pope, A. Müller, Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity 1994 (Kluwer Academic Publishers: Dordrecht, The Netherlands).
[3] Z. H. Peng, Angew. Chem. 2004, 116, 948.
| Crossref | GoogleScholarGoogle Scholar |
[4] D. E. Katsoulis, Chem. Rev. 1998, 98, 359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVShuw%3D%3D&md5=1008eebd3a0ff73b99b242b3da607397CAS | 11851510PubMed |
[5] J. L. Stark, V. G. Young, E. A. Maatta, Angew. Chem. 1995, 107, 2751.
| Crossref | GoogleScholarGoogle Scholar |
[6] S. Antonaraki, E. Androulaki, D. Dimotikali, A. Hiskia, E. Papaconstantinou, J. Photochem. Photobiol. A Chem. 2002, 148, 191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xktlaqu78%3D&md5=66bcd70054814c0284dbdc067541bf7fCAS |
[7] P. Kormali, D. Dimoticali, D. Tsipi, A. Hislia, E. Papaconstantinou, Appl. Catal. B 2004, 48, 175.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFamt7w%3D&md5=a90f2351b3a6802dd160cf7928b67d28CAS |
[8] E. Papaconstantinou, Chem. Soc. Rev. 1989, 18, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXks1OltL0%3D&md5=13edc43cbb64e4ec78fce8598a5c2e77CAS |
[9] C. L. Hill, M. Prosser, Coord. Chem. Rev. 1995, 143, 407.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptlSktrk%3D&md5=9232e04999462d73994fd4deea57bb26CAS |
[10] M. Skunik, B. Baranowska, D. Fattakhova, K. Miecznikowski, M. Chojak, A. Kuhn, P. J. Kulesza, J. Solid State Electrochem. 2006, 10, 168.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWiu7jF&md5=cf8026c539a7a380e1224c7e0115d9c3CAS |
[11] Y. P. Shan, G. C. Yang, Y. L. Sun, S. J. Pang, J. Gong, Z. M. Su, L. Y. Qu, Electrochim. Acta 2007, 53, 569.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGrsLfF&md5=3e131b778f74b310f78b5f035aed6688CAS |
[12] R. Wlodarczyk, M. Chojak, K. Miecznikowski, A. Kolary, P. J. Kulesza, R. Massi, J. Power Sources 2006, 159, 802.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovF2rsb4%3D&md5=ccabe70eb1b0c42cfef30c0d6e8be197CAS |
[13] W. Feng, T. R. Zhang, Y. Liu, R. Lu, Y. Y. Zhao, J. N. Yao, J. Mater. Sci. Lett. 2002, 21, 497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVekurs%3D&md5=655100c8262a0bab146e5fc619fedf3eCAS |
[14] G. Hodes, Electrochemistry of Nanomaterials 2001 (Wiley-VCH Verlag: Weinheim).
[15] G. Süss-Fink, Angew. Chem. Int. Ed. 2008, 47, 5888.
| Crossref | GoogleScholarGoogle Scholar |
[16] A. Sartorel, M. Carraro, G. Scorrano, R. D. Zorzi, S. Geremia, N. D. McDaniel, S. Bernhard, M. Bonchio, J. Am. Chem. Soc. 2008, 130, 5006.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlOis7o%3D&md5=93344afb5da9b1ab5491ce5242311623CAS | 18345628PubMed |
[17] Y. V. Geletii, B. Botar, P. Kogerler, D. A. Hillesheim, D. G. Musaev, C. L. Hill, Angew. Chem. Int. Ed. 2008, 47, 3896.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVertbc%3D&md5=f8ad0fbc6944726c534f9a65b0ecf94fCAS |
[18] A. Dolbecq, C. Mello-Draznieks, P. Mialane, J. Marrot, G. Ferey, F. Secheresse, Eur. J. Inorg. Chem. 2005, 2005, 3009.
| Crossref | GoogleScholarGoogle Scholar |
[19] P. Judeinstein, J. Sol-Gel Sci. Technol. 1994, 2, 147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXit1agsbo%3D&md5=cb20b07c13187352f30d61cca34e34aeCAS |
[20] W. Feng, T. R. Zhang, Y. Liu, R. Lu, Y. Y. Zhao, J. N. Yao, J. Mater. Sci. 2003, 38, 1045.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFGitbg%3D&md5=90023002adbe8c7c042a2dff1a823abfCAS |
[21] S. Bareyt, S. Piligkos, B. Hasenknopf, P. Gouzerh, E. Lacote, S. Thorimbert, M. Malacria, J. Am. Chem. Soc. 2005, 127, 6788.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlWntbk%3D&md5=cdec630d212e32f8874748cdc83fc1e7CAS | 15869301PubMed |
[22] C. H. Springsteen, L. L. Johnson, R. L. LaDuca, Solid State Sci. 2007, 9, 804.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSntLnI&md5=9885d923a1852ddbccdff6a57d651424CAS |
[23] M. K. Seery, N. Fay, T. McCormac, E. Dempsey, R. J. Forster, T. E. Keyes, Phys. Chem. Chem. Phys. 2005, 7, 3426.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWmurvF&md5=1b7961a4471b5545bb5b35e7a3bc9543CAS | 16273143PubMed |
[24] Y. Lu, Y. G. Li, E. B. Wang, J. Lu, L. Xu, R. Clérac, Eur. J. Inorg. Chem. 2005, 2005, 1239.
| Crossref | GoogleScholarGoogle Scholar |
[25] C. Inman, J. M. Knaust, S. W. Keller, Chem. Commun. 2002, 155, 157.
[26] J. C. P. Gabriel, R. Nagarajan, S. Nagarajan, A. K. Cheetham, C. N. R. Rao, J. Solid State Chem. 1997, 129, 257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVansb0%3D&md5=f4d4ecb68ba1f7c70e0650debb61fa70CAS |
[27] M. J. Calhorda, J. Organomet. Chem. 1994, 475, 149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsFGqt70%3D&md5=0e03296cac0b84d76f1e440fcebf7fb7CAS |
[28] B. Xu, M. Lu, J. Kang, D. Wang, J. Brown, Z. Peng, Chem. Mater. 2005, 17, 2841.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslKmtrg%3D&md5=efd64444144250e0803c9c599d72d38eCAS |
[29] A. K. Harriman, J. Elliott, M. A. H. Alamiry, L. L. Pleux, M. Severac, Y. Pellegrin, E. Blart, C. Fosse, C. Cannizzo, C. R. Mayer, F. Odobel, J. Phys. Chem. C 2009, 113, 5834.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFKhurc%3D&md5=c10184efa5a12b7d5f17df1a3986a51bCAS |
[30] F. Odobel, M. Severac, Y. Pellegrin, E. Blart, C. Fosse, C. Cannizzo, C. R. Mayer, K. J. Eliott, A. Harriman, Chem. Eur. J. 2009, 15, 3130.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFOru7k%3D&md5=7d3c674ae44146b8d18a116097e5d263CAS | 19197929PubMed |
[31] K. J. Elliott, A. Harriman, L. L. Pleux, Y. Pellegrin, E. Blart, C. R. Mayerc, F. Odobel, Phys. Chem. Chem. Phys. 2009, 11, 8767.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Sqs7bL&md5=a52c8e2d90559e4decfd62d805944db1CAS | 20449021PubMed |
[32] B. Matt, S. Renaudineau, L. M. Chamoreau, C. Afonso, G. Izzet, A. Proust, J. Org. Chem. 2011, 76, 3107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFKntLg%3D&md5=aa776e4482d5416785eb94bd5ad3d3ccCAS | 21417425PubMed |
[33] B. Matt, C. Coudret, C. Viala, D. Jouvenot, F. Loiseau, G. Izzet, A. Proust, Inorg. Chem. 2011, 50, 7761.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVOitLY%3D&md5=449ac2fd9721f261adf90c0d29330035CAS | 21774455PubMed |
[34] K. Nomiya, Y. Togashi, Y. Kasahara, S. Aoki, H. Seki, M. Noguchi, S. Yoshida, Inorg. Chem. 2011, 50, 9606.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCmtLnF&md5=600a4836546811e21c5c7db57ed30605CAS | 21902232PubMed |
[35] R. Villanneau, A. Marzouk, Y. Wang, A. Djamaa, G. Laugel, A. Proust, F. Launay, Inorg. Chem. 2013, 52, 2958.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVCmtL0%3D&md5=74bb8f6daf8d5f8f7f5ab3bd53c5543eCAS | 23441842PubMed |
[36] R. Contant, Inorg. Synth. 1990, 27, 104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsVyrurg%3D&md5=e6882aaca0bf866d506cb653badeccf5CAS |
[37] H. Onouchi, K. Maeda, E. Yashima, J. Am. Chem. Soc. 2001, 123, 7441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFGisrs%3D&md5=5b7a35c5ca939d8f2c155f353477a11eCAS | 11472183PubMed |
[38] R. Sathiyapriay, R. J. Karunakaran, Asian J, Chem. 2006, 18, 1321.