Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Three ZnII Coordination Polymers Based on 1,2-Naphthalenedicarboxylate and Different 4,4′-Bipyridyl-like Bridging Co-ligands: Structural Regulation and Properties

Min Chen A , Zhuo-Wei Wang A , Hui Zhao A and Chun-Sen Liu A B
+ Author Affiliations
- Author Affiliations

A Zhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou, Henan 450002, China.

B Corresponding author. Email: chunsenliu@zzuli.edu.cn

Australian Journal of Chemistry 68(1) 113-120 https://doi.org/10.1071/CH14115
Submitted: 5 March 2014  Accepted: 12 April 2014   Published: 15 May 2014

Abstract

Three new ZnII coordination polymers, namely [Zn(ndc)]n (1), {[Zn(ndc)(bpe)]·1.25H2O}n (2), and {[Zn(ndc)(bpee)]·1.25H2O}n (3), were prepared based on in situ reaction of 1,2-naphthalenedicarboxylic anhydride (ndca) with two different 4,4′-bipyridyl-like bridging co-ligands, bpe and bpee (ndc = 1,2-naphthalenedicarboxylate, bpe = 1,2-bis(4-pyridyl)ethane, and bpee = trans-1,2-bis(4-pyridyl)ethylene). In 1, the ZnII and ndc ligands are directly involved in the polymeric frameworks, forming a 2D (43.63) layered network. Complexes 2 and 3 similarly consist of Zn2(ndc)2 binuclear units that are linked by bpe and bpee ligands, respectively, into a 2D (44.62) sheet. However, further analysis indicates that 2 and 3 feature the similar 2-fold interpenetrating structure linked via hydrogen bonding interactions for 2 and aromatic stacking interactions for 3. In addition, the resultant 2D→3D supramolecular frameworks of 2 and 3 are both constructed via aromatic stacking interactions. Also, the fluorescent and thermal properties of the complexes were investigated.


References

[1]  M. Du, C.-P. Li, C.-S. Liu, S.-M. Fang, Coord. Chem. Rev. 2013, 257, 1282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjt1aiurg%3D&md5=25afc7cb9317f7346f28048acee2d3b8CAS |

[2]  P. A. Tanner, C. K. Duan, Coord. Chem. Rev. 2010, 254, 3026.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12gu7zP&md5=e2cb604db64c4f94dbaea6e4ef7f100bCAS |

[3]  J. C. G. Bünzli, Chem. Rev. 2010, 110, 2729.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  S. R. Batten, R. Robson, Angew. Chem. Int. Ed. 1998, 37, 1460.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  B. D. Chandler, D. T. Cramb, G. K. H. Shimizu, J. Am. Chem. Soc. 2006, 128, 10403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xntlags7g%3D&md5=a651c08796d5c6908d851f2003fcf007CAS | 16895405PubMed |

[6]  M. W. Hosseini, Accounts Chem. Res. 2005, 38, 313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1KktQ%3D%3D&md5=d2b7b3ad37f179276b89c44ccac4057fCAS |

[7]  P. J. Steel, Accounts Chem. Res. 2005, 38, 243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptlSjtQ%3D%3D&md5=b755d92e1cad7ecdac2f1372eb6cea59CAS |

[8]  L. Brammer, Chem. Soc. Rev. 2004, 33, 476.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlagsbg%3D&md5=a5384e55ee07ec6384a84d883ede74abCAS | 15480472PubMed |

[9]  C.-P. Li, J. M. Wu, M. Du, Inorg. Chem. 2011, 50, 9284.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCmt7bF&md5=199f8a5ac86a0b72bc3081e773e98196CAS | 21902177PubMed |

[10]  M. Du, C.-P. Li, J.-H. Guo, CrystEngComm 2009, 11, 1536.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSksrfM&md5=a4fc233170477eb7687206b500418956CAS |

[11]  C.-P. Li, Q. Yu, Z.-H. Zhang, M. Du, CrystEngComm 2010, 12, 834.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFWisrs%3D&md5=73c36b5ffb0195afef758d252bde357cCAS |

[12]  B. Kesanli, Y. Cui, M. R. Smith, E. W. Bittner, B. C. Bockrath, W. Lin, Angew. Chem. Int. Ed. 2005, 44, 72.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptVKl&md5=a230f799af27c2d88b6f46d3a3e217aaCAS |

[13]  M. Du, X.-J. Jiang, X. Tan, Z.-H. Zhang, H. Cai, CrystEngComm 2009, 11, 454.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFyjsb0%3D&md5=97d29ed2917d39edf7db335166031567CAS |

[14]  L.-F. Ma, X.-Q. Li, Q.-L. Meng, L.-Y. Wang, M. Du, H.-W. Hou, Cryst. Growth Des. 2011, 11, 175.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGltLfK&md5=a0fa00df31aa4e5ed27e83d48dd01ba7CAS |

[15]  J. Chen, C.-P. Li, M. Du, CrystEngComm 2011, 13, 1885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt12hs7w%3D&md5=09a6ea9ce50a026e4a0fd2fa6a4007a7CAS |

[16]  R. Sen, D. Mal, P. Brandão, G. Rogez, Z. Lin, CrystEngComm 2013, 15, 2113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislygurk%3D&md5=583315c26e3a44ab5c19ae55aa625288CAS |

[17]  X. Huang, Z.-F. Li, Q.-H. Jin, Q.-M. Qiu, Y.-Z. Cui, Q.-R. Yang, Polyhedron 2013, 65, 129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WnurvJ&md5=75835139ae8920637c231da4a603a712CAS |

[18]  J.-J. Wang, T.-T. Wang, L. Tang, X.-Y. Hou, L.-J. Gao, F. Fu, M.-L. Zhang, J. Coord. Chem. 2013, 66, 3979.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ynu7%2FK&md5=9c5ce29db1e91ba74acba5fee54570efCAS |

[19]  M. Dai, X.-R. Su, X. Wang, B. Wu, Z.-G. Ren, X. Zhou, J.-P. Lang, Cryst. Growth Des. 2014, 14, 240.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSqur%2FF&md5=272160e9df2e16d0e6974ef97f677d3bCAS |

[20]  G.-J. Cao, Z.-L. Wang, C. Rong, Q.-L. Li, Inorg. Chem. Commun. 2013, 36, 163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWhu73I&md5=2e7f244f0c84d78b839a7b22caf694e7CAS |

[21]  Z.-R. Meng, X. He, X.-Y. Wu, L.-J. Chen, W.-B. Yang, C.-Z. Lu, Chinese. J. Struc. Chem. 2010, 10, 4773.

[22]  C.-P. Li, Q. Yu, J. Chen, M. Du, Cryst. Growth Des. 2010, 10, 2650.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVyntrg%3D&md5=162b796d093413d42d5a915b964fd41dCAS |

[23]  G.-Z. Liu, S.-H. Li, L.-Y. Wang, CrystEngComm 2012, 14, 880.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVersQ%3D%3D&md5=83b1cb7a74bc35bc0a7d748baf78b9c2CAS |

[24]  J.-Q. Liu, Y.-S. Huang, Y.-Y. Zhao, Z.-B. Jia, Cryst. Growth Des. 2011, 11, 569.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFaq&md5=72d2f950e6e7f22dd44acaf937825f79CAS |

[25]  J. Wen, J.-Y. Hu, E. C. Sañudo, M. Chen, C.-S. Liu, Aust. J. Chem. 2013, 66, 963.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Ois73L&md5=4922b4e7287c26934a2e3ac233986f70CAS |

[26]  S.-M. Fang, Q. Zhang, M. Hu, X.-G. Yang, L.-M. Zhou, M. Du, C.-S. Liu, Cryst. Growth Des. 2010, 10, 4773.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ahurjL&md5=60a3518a768e9495b935f802db065048CAS |

[27]  S.-M. Fang, M. Hu, Q. Zhang, M. Du, C.-S. Liu, Dalton Trans. 2011, 40, 4527.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVKmsL0%3D&md5=272505ac76a11010973075f330a7d9a5CAS | 21431216PubMed |

[28]  A. W. Addison, T. N. Rao, J. Reedijk, J. V. Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=db39a67eb2e55a22eb54cb229ac51331CAS |

[29]  V. W. W. Yam, K. K. W. Lo, Chem. Soc. Rev. 1999, 28, 323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1WjsLo%3D&md5=262ae8bc23b57a07da075884481c1bcfCAS |

[30]  A. X. S. Bruker, SAINT Software Reference Manual 1998 (Bruker: Madison, WI).

[31]  G. M. Sheldrick, SADABS, Siemens Area Detector Absorption Corrected Software 1996 (University of Göttingen: Göttingen).

[32]  G. M. Sheldrick, SHELXTL NT Version 5.1. Program for Solution and Refinement of Crystal Structures 1997 (University of Göttingen: Göttingen).