Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Mesoporous Carbon-supported Cu/ZnO for Methanol Synthesis from Carbon Dioxide

Huamei Duan A B C , Yunxia Yang C D , Ranjeet Singh B , Ken Chiang C , Steven Wang C , Penny Xiao B , Jim Patel C , David Danaci B , Nick Burke C , Yuchun Zhai A and Paul A. Webley B D
+ Author Affiliations
- Author Affiliations

A School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning, 110819, China.

B Department of Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, Vic. 3010, Australia.

C CSIRO Earth Science and Resource Engineering, Clayton, Vic. 3168, Australia

D Corresponding authors. Email: yunxia.yang@csiro.au; paul.webley@unimelb.edu.au

Australian Journal of Chemistry 67(6) 907-914 https://doi.org/10.1071/CH13622
Submitted: 13 November 2013  Accepted: 3 February 2014   Published: 13 March 2014

Abstract

Catalysts based on Cu/CuO–ZnO supported on mesoporous carbon (FDU-15) were synthesised and tested for methanol production from CO2 and H2. The catalytic activity was strongly dependent on the method by which the Cu and Zn components were loaded onto the carbon support. Three synthetic methods were trialled and the materials produced were characterised by various techniques. The materials with better contact between the Cu/CuO and ZnO particles were catalytically more active towards methanol production (CZC-3 > CZC-2 > CZC-1). The methanol production rate for CZC-3 (7.3 mmol g–1 h–1) was higher, on a catalyst weight basis, than that of a commercial catalyst (5.6 mmol g–1 h–1). Also, CZC-3 had a higher turnover frequency (1.8 × 10–2 s–1) than the commercial catalyst (0.2 × 10–2 s–1). This work demonstrates that Cu/CuO and ZnO particles supported on mesoporous carbon, prepared by an appropriate method, are promising catalysts for methanol synthesis from carbon dioxide.


References

[1]  M. Khavarian, S.-P. Chai, A. R. Mohamed, J. Nanosci. Nanotechnol. 2013, 13, 4825.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1Ors7w%3D&md5=5287f8cdecc89786ea609e5cef510ef9CAS | 23901504PubMed |

[2]  (a) G. Centi, E. A. Quadrelli, S. Perathoner, Energy Environ. Sci. 2013, 6, 1711.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvFyrsbY%3D&md5=36a7ebfa3d15b39144e0e5f6e4fea8d1CAS |
      (b) B. Doss, C. Ramos, S. Atkins, Energy Fuels 2009, 23, 4647.
         | Crossref | GoogleScholarGoogle Scholar |

[3]     (a) G. Ertl, Handbook of Heterogeneous Catalysis 2008 (Wiley-VCH: New York).
      (b) M. Sayed, R. Cooney, Aust. J. Chem. 1982, 35, 2483.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) U. R. Pillai, S. Deevi, Appl. Catal. B-Environ. 2006, 65, 110.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlGltb4%3D&md5=75a42a0d43b0d22fb169cd5aca671844CAS |
      (b) Q. Zhang, Y.-Z. Zuo, M.-H. Han, J.-F. Wang, Y. Jin, F. Wei, Catal. Today 2010, 150, 55.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Saito, Catal. Surv. Asia 1998, 2, 175.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  S. Zander, E. L. Kunkes, M. E. Schuster, J. Schumann, G. Weinberg, D. Teschner, N. Jacobsen, R. Schlögel, M. Behrens, Angew. Chem. Int. Ed. 2013, 52, 6536.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVelsL8%3D&md5=76d7899bdc852482157802b97e9f150dCAS |

[6]  (a) M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar, R. W. Fischer, J. K. Nørskov, R. Schlögel, Science 2012, 336, 893.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFens70%3D&md5=5a19499d95074d11c976980a5b13084cCAS | 22517324PubMed |
      (b) M. Behrens, J. Catal. 2009, 267, 24.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Behrens, G. Lolli, N. Muratova, I. Kasatkin, M. Haevecker, R. N. d’Alnoncourt, O. Storcheva, K. Köhler, M. Muhler, R. Schlögel, Phys. Chem. Chem. Phys. 2013, 15, 1374.

[7]  (a) A. Rozovskii, G. Lin, Top. Catal. 2003, 22, 137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlSktLg%3D&md5=b7ff873b3ae1a6f8ce98b3ed1296f98bCAS |
      (b) X. M. Liu, G. Q. Lu, Z. F. Yan, J. Beltramini, Ind. Eng. Chem. Res. 2003, 42, 6518.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  L. Shi, G. Yang, K. Tao, Y. Yoneyama, Y. Tan, N. Tsubaki, Accounts Chem. Res. 2013, 46, 1838.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlOrtLg%3D&md5=7bb94b5059c08568f2cdf405fed369bdCAS |

[9]  T. Iizuka, H. Ikeda, T. Terao, K. Tanabe, Aust. J. Chem. 1982, 35, 927.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xks1Wks78%3D&md5=a9a0617cd4349e617ae3a792f9c35e79CAS |

[10]  (a) M. W. E. van den Berg, S. Polarz, O. P. Tkachenko, K. Kähler, M. Muhler, W. Grünert, Catal. Lett. 2009, 128, 49.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. W. E. van den Berg, S. Polarz, O. P. Tkachenko, K. V. Klementiev, M. Bandyopadhyay, L. Khodeir, H. Gies, M. Muhler, W. Grünert, J. Catal. 2006, 241, 446.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Polarz, F. Nleues, M. W. E. van den Berg, W. Grünert, L. Khodeir, J. Am. Chem. Soc. 2005, 127, 12028.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) Y. Wan, Y. Shi, D. Zhao, Chem. Mater. 2008, 20, 932.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOntbrJ&md5=f6250166b33afe404a0d5db01962f2d4CAS |
      (b) F. Su, J. Zeng, P. Bai, L. Lv, P. Z. Guo, H. Sun, H. L. Li, J. Yu, J. Y. Lee, S. Zhao, Ind. Eng. Chem. Res. 2007, 46, 9097.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  E. Kunkes, M. Behrens, Chemical Energy Storage 2013 (Deutsche Nationalbibliothek: Berlin, Germany).

[13]  K. Klier, Adv. Catal. 1982, 31, 243.
         | 1:CAS:528:DyaL3sXhtV2hsbo%3D&md5=d5411138dacae8ebf1eeb35cfc1e063cCAS |

[14]  W. P. A. Jansen, J. Beckers, J. C. v. d. Heuvel, A. W. Denier v. d. Gon, A. Bliek, H. Brongersma, J. Catal. 2002, 210, 229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtlWmtbk%3D&md5=fa5035c05be29b1629a403ca28ec71bdCAS |

[15]  (a) E. D. Batyrev, N. R. Shiju, G. Rothenberg, J. Phys. Chem. C 2012, 116, 19335.
         | 1:CAS:528:DC%2BC38Xht1OktL%2FF&md5=48ecf89d2eb2f13bb63df978a843bcb3CAS |
      (b) J. Nakamura, Y. Choi, T. Fujitani, Top. Catal. 2003, 22, 277.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  K. Waugh, Catal. Today 1992, 15, 51.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xkslaks74%3D&md5=295db9d44ac954999711aeda94be1ba3CAS |

[17]  Y. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, C. Yu, B. Tu, D. Zhao, Angew. Chem. Int. Ed. 2005, 117, 7215.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catal. Today 1998, 41, 207.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsFOisrY%3D&md5=8fcbdfeba723ceaf1c98f5937dfeb925CAS |

[19]  B. E. Warren, X-ray Diffraction 1990 (Dover Publication: New York).

[20]  R. Burch, S. E. Golunski, M. S. Spencer, J. Chem. Soc., Faraday Trans. 1990, 86, 268.