Preparation and Photocatalysis of Nano-Zn/Ce Composite Oxides
Xiuping Li A B C , Yuchun Zhai A C , Peihua Ma A and Rongxiang Zhao BA School of Materials and Metallurgy, Northeastern University, Shenyang Liaoning 110004, China.
B College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University 113001, China.
C Corresponding authors. Email: lilili_171717@126.com; zhaiyc@smm.neu.edu.cn
Australian Journal of Chemistry 67(4) 657-662 https://doi.org/10.1071/CH13448
Submitted: 23 June 2013 Accepted: 30 November 2013 Published: 3 February 2014
Abstract
Metal oxide photocatalysts often lead to partial or complete mineralization of organic pollutants. On irradiation with UV-visible light, metal oxides catalyze redox reactions in the presence of air and O2 and water. Using ascorbic acid as a new combustion agent, ZnO was rapidly synthesized. Nano-Zn/CeO2 composites were prepared by a heterogeneous-precipitation method using (NH4)2CO3 as precipitation agent. X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectrometry, ultraviolet spectrophotometry, and differential thermal analysis were used to analyse the microstructures of the synthesized materials. Differential thermal analysis, transmission electron microscopy, and X-ray diffraction analyses indicated that ZnO was coated by CeO2. Herein, a nano-Zn/Ce composite was explored as a catalyst for Rhodamine B photodegradation with a 125-W lamp as the UV radiation source in a batch reactor. The results show the photocatalytic properties of the nano-Zn/Ce composite were superior to ZnO, CeO2, and nano-Ce/Zn composites.
References
[1] M. Faisal, M. A. Tariq, M. Muneer, Dyes Pigments 2007, 72, 233.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsVyqsbY%3D&md5=a5c236b44e65b9b4e30a1cde4f9baf35CAS |
[2] M. M. Rahman, A. Jamal, S. B. Khan, M. Faisal, J. Nanopart. Res. 2011, 13, 3789.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSiu77N&md5=82e9ac1d5ca6c28433821ed8a7388ec6CAS |
[3] D. Ravelli, D. Dondi, M. Fagnoni, A. Albini, Chem. Soc. Rev. 2009, 38, 1999.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Slsb4%3D&md5=46c3e1e557ddd7e16d6a9f2887a17b5fCAS | 19551179PubMed |
[4] S. Malato, P. Fernández-Ibañez, M. I. Maldonado, J. Blanco, W. Gernjak, Catal. Today 2009, 147, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSls7rE&md5=80e5b2a76a43554996c1867b4636f98bCAS |
[5] L. Y. Yang, S. Y. Dong, J. H. Sun, J. L. Feng, Q. H. Wu, S. P. Sun, J. Hazard. Mater. 2010, 179, 438.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVGltLw%3D&md5=9ca5f2f92d3f012e265930564a92518cCAS | 20403660PubMed |
[6] X. C. Song, Y. F. Zheng, E. Yang, G. Liu, Y. Zhang, H. F. Chen, Y. Y. Zhang, J. Hazard. Mater. 2010, 179, 1122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVGlsr0%3D&md5=b61185c0797ec0f4821e347d9166aa12CAS | 20427124PubMed |
[7] Y. M. Chen, M. Yu, Friend Sci. Amateurs 2011, 27, 153.[in Chinese].
[8] S. W. Cao, Y. J. Zhu, J. Phys. Chem. C 2008, 112, 6253.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVGjtL4%3D&md5=4a78e24c7496003ed4cced11afc466b9CAS |
[9] C. H. An, S. Peng, Y. G. Sun, Adv. Mater. 2010, 22, 2570.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVGqsLw%3D&md5=7297c9521c7540f55a157d0fc284c681CAS |
[10] L. Han, P. Wang, Z. K. Xu, S. J. Dong, Chem. Commun. 2013, 4953.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFyru7s%3D&md5=cda647632f722c19d4b0cd38cb1dbcafCAS |
[11] T. Kamegawa, Y. K. Shimizu, H. Yamashita, Adv. Mater. 2012, 24, 3697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1eis7w%3D&md5=ef590ac62ab42ed79ef3108a740fdd6cCAS | 22700455PubMed |
[12] Y. H. Zuo, Y. Qin, C. Jin, Y. Li, D. Shi, Q. Wu, J. Yang, Nanoscale 2013, 5, 4388.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFOqs78%3D&md5=62939ebe0dc0d8774da975f742f83156CAS |
[13] X. B. Chen, S. H. Shen, L. J. Guo, S. S. Mao, Chem. Rev. 2010, 110, 6503.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2lsbvE&md5=b1b27e29c34608dc89615dba32c0d6dcCAS |
[14] M. G. Sujana, K. K. Chattopadyay, S. Anand, Appl. Surf. Sci. 2008, 254, 7405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyns73O&md5=f73ec4d3a7742630362851e6285fdb5dCAS |
[15] K. B. Sundaram, P. F. Wahid, J. Vac. Sci. Technol. A 1997, 15, 52.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXpt1Orsw%3D%3D&md5=b44271049decdd274ce4b1f6b423ca96CAS |
[16] T. Y. Ma, Z. Y. Yuan, J. L. Cao, Eur. J. Inorg. Chem. 2010, 2010, 716.
| Crossref | GoogleScholarGoogle Scholar |
[17] M. Faisal, S. B. Khany, M. M. Rahman, A. Jamal, K. Akhtar, M. M. Abdullah, J. Mater. Sci. Technol. 2011, 27, 594.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlemtLbM&md5=97ba44c27179fa2e80d05bdb36550026CAS |
[18] Y. S. Chen, T. Y. Tseng, Adv. Sci. Lett. 2008, 1, 123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1Wkt7w%3D&md5=1f1ec9a8840fc53c05f0ae3c002aec3dCAS |
[19] X. Fang, R. Yu, B. Li, P. Somasundaran, K. Chandran, J. Colloid Interface Sci. 2010, 348, 329.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFKltL4%3D&md5=b452a7eacdffa98b77f0549d874e7c33CAS | 20546765PubMed |
[20] J. W. Zhang, N. H. Tan, Y. L. Liu, S. Q. Man, Chinese J. Inorg. Chem. 2010, 26, 229.[in Chinese].
| 1:CAS:528:DC%2BC3cXisVKnsbk%3D&md5=a2a84350b50a74df3e16f2cdeb6da92bCAS |
[21] A. L. Cui, T. G. Wang, Y. Jin, M. Sun, Chem. J. Chinese Univ. 2001, 22, 1543.[in Chinese].
| 1:CAS:528:DC%2BD3MXoslOqtLo%3D&md5=daacba3a37a2ac50a5ac5370f4339b45CAS |
[22] A. L. Cui, T. G. Wang, Y. Jin, Chem. J. Chinese Univ. 2000, 21, 1560.[in Chinese].
| 1:CAS:528:DC%2BD3cXnsVSisbY%3D&md5=019522fe69a19dfaf99f0a283e935306CAS |