Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Phase Transfer of Monodisperse Iron Oxide (Fe3O4) Nanocubes

Melissa R. Dewi A , William M. Skinner A and Thomas Nann A B
+ Author Affiliations
- Author Affiliations

A Ian Wark Research Institute, University of South Australia, Mawson Lakes Blvd, Adelaide, SA 5095, Australia.

B Corresponding author. Email: thomas.nann@unisa.edu.au

Australian Journal of Chemistry 67(4) 663-669 https://doi.org/10.1071/CH13595
Submitted: 1 November 2013  Accepted: 2 December 2013   Published: 20 December 2013

Abstract

Cube-shaped magnetic iron oxide nanoparticles were synthesised and studied with the aim to achieve superior magnetic properties. This study describes a straightforward and simple synthesis method for preparing monodisperse 11–14-nm superparamagnetic iron oxide nanocubes via an ‘effective monomer’ growth mechanism. The as-synthesised nanoparticles are insoluble in water. However, substitution of the non-polar ligands of the particles using a new method that involved an ionic compound generated colloidally stable and water dispersible cube-shaped particles with a very small hydrodynamic diameter. The cubes displayed superior magnetic properties over spherical particles.


References

[1]  F. Y. Jiang, C. M. Wang, Y. Fu, R. C. Liu, J. Alloy. Compd. 2010, 503, L31.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVWhsL4%3D&md5=1efa85b5171b912937535f85285b1fe1CAS |

[2]  L. M. Armijo, Y. I. Brandt, D. Mathew, S. Yadav, S. Maestas, A. C. Rivera, N. C. Cook, N. J. Withers, G. A. Smolyakov, N. L. Adolphi, T. C. Monson, D. L. Huber, H. D. C. Smyth, M. Osiński, Nanomaterials 2012, 2, 134.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFWlsrs%3D&md5=aa96cd0d57ca3f7d2151c22fe862a3a5CAS |

[3]  G. Zhen, B. W. Muir, B. A. Moffat, P. Harbour, K. S. Murray, B. Moubaraki, K. Suzuki, I. Madsen, N. Agron-Olshina, L. Waddington, P. Mulvaney, P. G. Hartley, J. Phys. Chem. C 2011, 115, 327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOqsbjK&md5=42b579d96ba0f0b1156d3ec1893f2bc3CAS |

[4]  S. Y. Chang, N.-Y. Zheng, C.-S. Chen, C.-D. Chen, Y.-Y. Chen, C. R. C. Wang, J. Am. Soc. Mass Spectr. 2007, 18, 910.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVWmtL4%3D&md5=f9503ce694ca461642e34631f491d1f0CAS |

[5]  J. W. M. Bulte, D. L. Kraitchman, NMR Biomed. 2004, 17, 484.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFGq&md5=d570ab3f97850620681a5976c62fc91fCAS |

[6]  M. Hatakeyama, H. Kishi, Y. Kita, K. Imai, K. Nishio, S. Karasawa, Y. Masaike, S. Sakamoto, A. Sandhu, A. Tanimoto, T. Gomi, E. Kohda, M. Abe, H. Handa, J. Mater. Chem. 2011, 21, 5959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlyisro%3D&md5=832c58d7bb85fae5993e5480c6a634e8CAS |

[7]  N. Zheng, J. Fan, G. D. Stucky, J. Am. Chem. Soc. 2006, 128, 6550.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFyitLw%3D&md5=5866ee83ebc0a65206ccf00a24787dfdCAS | 16704242PubMed |

[8]  P. Guardia, R. Di Corato, L. Lartigue, C. Wilhelm, A. Espinosa, M. Garcia-Hernandez, F. Gazeau, L. Manna, T. Pellegrino, ACS Nano 2012, 6, 3080.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xltlahs7g%3D&md5=3e9ef8878484932a2f8b84cae333d9aaCAS | 22494015PubMed |

[9]  A. K. Gupta, M. Gupta, Biomaterials 2005, 26, 3995.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFWr&md5=10e34f7bf5f030174c3cb81551ff9dceCAS | 15626447PubMed |

[10]  S. Mornet, S. Vasseur, F. Grasset, E. Duguet, J. Mater. Chem. 2004, 14, 2161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1egsLk%3D&md5=848da3206fc74e9dd930630b1ccec04cCAS |

[11]  A.-H. Lu, E. L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 2007, 46, 1222.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitF2lurs%3D&md5=7fad21a34db45a17159e41b07ed5247aCAS |

[12]  Z. Xu, C. Shen, Y. Tian, X. Shi, H.-J. Gao, Nanoscale 2010, 2, 1027.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKktrjJ&md5=ed73f7588603b5c9029aa55465999322CAS | 20648303PubMed |

[13]  B. Voigt, A. Göbler, Cryst. Res. Technol. 1986, 21, 1177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtFOquw%3D%3D&md5=77e0a7094082ce84c0723f4f949c9f57CAS |

[14]  Z. Li, H. Chen, H. Bao, M. Gao, Chem. Mater. 2004, 16, 1391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXit1Sqt70%3D&md5=e1a05a735b49eea878fd9b4fd1038261CAS |

[15]  J. H. L. Beal, S. Prabakar, N. Gaston, G. B. Teh, P. G. Etchegoin, G. Williams, R. D. Tilley, Chem. Mater. 2011, 23, 2514.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFGjsbg%3D&md5=9cbbfaa317c0e901ff3f6e52eef9a23eCAS |

[16]  J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T. Hyeon, Nat. Mater. 2004, 3, 891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVehtrjM&md5=e2b2588014184e7df4762d2667c10865CAS | 15568032PubMed |

[17]  Y. Kang, J. B. Pyo, X. Ye, R. E. Diaz, T. R. Gordon, E. A. Stach, C. B. Murray, ACS Nano 2013, 7, 645.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOlsr7N&md5=b3425120aef7da5a7e1c2adae16a70e2CAS | 23211025PubMed |

[18]  S. Kumar, T. Nann, Small 2006, 2, 316.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1aqs7w%3D&md5=a7732c355a31f58629f2a785e244d913CAS | 17193043PubMed |

[19]  T. Wang, X. Wang, D. LaMontagne, Z. Wang, Z. Wang, Y. C. Cao, J. Am. Chem. Soc. 2012, 134, 18225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2rs7zF&md5=e785d3371f27f245a811991f160d9a0bCAS | 23057799PubMed |

[20]  W. E. Mahmoud, L. M. Bronstein, F. Al-Hazmi, F. Al-Noaiser, A. A. Al-Ghamdi, Langmuir 2013, 29, 13095.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFelsbrL&md5=70af36051305bfbafeff33e0a23a64a2CAS | 24079275PubMed |

[21]  C. Yang, J. Wu, Y. Hou, Chem. Commun. 2011, 47, 5130.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVKrtro%3D&md5=81279e788986fe6b7ae7990dce6a81cfCAS |

[22]  S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N.-M. Hwang, J.-G. Park, T. Hyeon, J. Am. Chem. Soc. 2007, 129, 12571.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKmsbfI&md5=e9bd92b0c53fd08f396cd4ed038dfe30CAS | 17887758PubMed |

[23]  Y. Xu, Y. Qin, S. Palchoudhury, Y. Bao, Langmuir 2011, 27, 8990.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFWhs7w%3D&md5=cce6e1742c4d5026be8d4f1ba1f41964CAS | 21644795PubMed |

[24]  C. Tassa, S. Y. Shaw, R. Weissleder, Accounts Chem. Res. 2011, 44, 842.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlCrtL4%3D&md5=4a2358127424c5a7afd6a6bb900c6e9dCAS |

[25]  M. Carmen Bautista, O. Bomati-Miguel, M. del Puerto Morales, C. J. Serna, S. Veintemillas-Verdaguer, J. Magn. Magn. 2005, 293, 20.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  C. C. Berry, S. Wells, S. Charles, A. S. G. Curtis, Biomaterials 2003, 24, 4551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVanu7g%3D&md5=c7741ecf8443e06d9c8f2f955d167c94CAS | 12950997PubMed |

[27]  H. Wu, H. Zhu, J. Zhuang, S. Yang, C. Liu, Y. C. Cao, Angew. Chem. Int. Ed. 2008, 47, 3730.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVKiu7w%3D&md5=9d619c257fa3f0c1e521f2e8ee4bd920CAS |

[28]  P. D. McNaughter, J. C. Bear, D. C. Steytler, A. G. Mayes, T. Nann, Angew. Chem. Int. Ed. 2011, 50, 10384.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOls73P&md5=fccb9bf9329ef40f01fdb5a98968c467CAS |

[29]  M. Wang, M.-L. Peng, W. Cheng, Y.-L. Cui, C. Chen, J. Nanosci. Nanotechnol. 2011, 11, 3688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFOksL4%3D&md5=1af8cd135131b3ebb29d46b82fa4f0a3CAS | 21776755PubMed |

[30]  L. Manna, E. C. Scher, A. P. Alivisatos, J. Am. Chem. Soc. 2000, 122, 12700.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotl2nt78%3D&md5=f0a6e4001593b0b8481c2c51d7cd47beCAS |

[31]  Z. A. Peng, X. Peng, J. Am. Chem. Soc. 2001, 123, 1389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslSgtA%3D%3D&md5=201a3877e8c89b6d54501eaec220d294CAS |

[32]  G. Wulff, Z. Kristallogr. Minera. 1901, 449.
         | 1:CAS:528:DyaD28XhtVWq&md5=2522d6d525000e9af90c906250455297CAS |

[33]  H.-Q. Wang, T. Nann, ACS Nano 2009, 3, 3804.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlaltb3O&md5=6ff9be67efd8796dd8c41edf527cd2c9CAS | 19873986PubMed |

[34]  Y. S. Dedkov, M. Fonin, D. V. Vyalikh, J. O. Hauch, S. L. Molodtsov, U. Rüdiger, G. Güntherodt, Phys. Rev. B 2004, 70, 073405.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  M. Fonin, R. Pentcheva, Y. S. Dedkov, M. Sperlich, D. V. Vyalikh, M. Scheffler, U. Rüdiger, G. Güntherodt, Phys. Rev. B 2005, 72, 104436.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  T. J. Regan, H. Ohldag, C. Stamm, F. Nolting, J. Lüning, J. Stöhr, R. L. White, Phys. Rev. B 2001, 64, 214422.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  A. Dong, X. Ye, J. Chen, Y. Kang, T. Gordon, J. M. Kikkawa, C. B. Murray, J. Am. Chem. Soc. 2011, 133, 998.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2kurvF&md5=0281c034252dc6568c60619be9d867c0CAS | 21175183PubMed |