Simple Metal-catalyst-free Production of Carbon Nanostructures
Thomas K. Ellis A , Christian Paras B , Matthew R. Hill B and John A. Stride A C DA School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
B CSIRO Division of Materials Science and Engineering, Private Bag 33, Clayton South MDC, Vic. 3169, Australia.
C Bragg Institute, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia.
D Corresponding author. Email: j.stride@unsw.edu.au
Australian Journal of Chemistry 66(11) 1435-1439 https://doi.org/10.1071/CH13332
Submitted: 28 June 2013 Accepted: 1 August 2013 Published: 16 September 2013
Abstract
We report the metal-catalyst-free production of multiwalled carbon nanotubes and nanobubbles, in a chemical reduction of hexachlorobenzene by metallic sodium, giving high yields (in excess of 80 %) and at temperatures as low as 190°C for multiwalled carbon nanotubes and 100°C for nanobubble formation. The carbon nanotube samples produced under solvothermal conditions were found to consist of large bundles of nanotubes (>50 µm) consistent with a facial growth from the surface of the molten metal. Meanwhile, the nanobubbles produced under ambient pressure were found to be small (≤1 µm), polydispersed (smallest ~50 nm), and the bulk to have a large microporous area. With the regulatory complexities and high environmental and economic costs of remediating waste containing highly hazardous halogenated aromatic chemicals, necessitating high-temperature incineration under strictly controlled conditions, this low-temperature, low-cost chemical degradation of hexachlorobenzene is of great potential as a scalable and workable remediation technology.
References
[1] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XotVOktQ%3D%3D&md5=98251250d8be8a8d2d30556ccb9c045bCAS |
[2] V. Shanov, A. Gorton, Y. Yun, M. Schulz, US patent US2008/0095695 A1 2007.
[3] S. Iijima, Nature 1991, 354, 56.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmt1Ojtg%3D%3D&md5=e5b13c2f6d883d6fdc2ef32a37cf54f4CAS |
[4] C. Journet, W. Maser, P. Bernier, A. Loiseau, M. L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer, Nature 1997, 388, 756.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXls1Gksbo%3D&md5=4a23dbd986141ccefb9ebebd711a3bf4CAS |
[5] M. Yudasaka, T. Komatsu, T. Ichihashi, S. Iijima, Chem. Phys. Lett. 1997, 278, 102.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFSqtbs%3D&md5=134cb926752e8247b6be582c91aef79eCAS |
[6] M. José-Yacamán, M. Miki-Yoshida, L. Rendon, J.G. Santiesteban, Appl. Phys. Lett. 1993, 62, 202.
| Crossref | GoogleScholarGoogle Scholar |
[7] S. Huang, Q. Cai, J. Chen, Y. Qian, L. Zhang, J. Am. Chem. Soc. 2009, 131, 2094.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVaqsLk%3D&md5=fe57ead47978200fe2bed9f39ddfe73fCAS | 19159295PubMed |
[8] B. Liu, W. Ren, L. Gao, S. Li, S. Pei, C. Liu, C. Jiang, H.-M. Cheng, J. Am. Chem. Soc. 2009, 131, 2082.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ohsro%3D&md5=16e0d8160c25501b6ef71fb7f5b8115eCAS | 19170494PubMed |
[9] Y. Jiang, Y. Wu, S. Zhang, C. Xu, W. Yu, Y. Xie, Y. Qian, J. Am. Chem. Soc. 2000, 122, 12383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFWis70%3D&md5=643a116ee7bf83e93503bba79fe362b2CAS |
[10] Y. Gogotsi, J. Libera, M. Yoshimura, J. Mater. Res. 2000, 15, 2591.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosl2nsb8%3D&md5=6a241330b902e34f82c1e30375d83343CAS |
[11] M. Choucair, P. Thordarson, J. A. Stride, Nat. Nanotechnol. 2009, 4, 30.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFak&md5=a7025e1c6e2f60de7217f95f77eccd86CAS | 19119279PubMed |
[12] G. Hu, M. Cheng, D. Ma, X. Ba, Chem. Mater. 2003, 15, 1470.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlGkt7o%3D&md5=dc543fa818256707a2236efabf5537c6CAS |
[13] T. Luo, L. Chen, K. Bao, W. Yu, Y. Qian, Carbon 2006, 44, 2844.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslGnsb8%3D&md5=9bd18aaaf700601667cdcc878739aa28CAS |
[14] Y. Yan, H. Yang, F. Zhang, B. Tu, D. Zhao, Carbon 2007, 45, 2209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWmsbvI&md5=72840f4bdeffbea88446304604e9f69dCAS |
[15] Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, J. Phys. Chem. B 2001, 105, 11424.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVOisbw%3D&md5=853b46a688569afce969e79b51114f22CAS |
[16] C.-H. Chen, C.-C. Huang, Int. J. Hyd. Energy 2007, 32, 237.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlelsA%3D%3D&md5=e54d5444c1d2c5498fe36083f1a23d86CAS |
[17] B. Panella, M. Hirscher, S. Roth, Carbon 2005, 43, 2209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVWqurs%3D&md5=8ca63cb87204b346345fdcf051580fbaCAS |
[18] M. Eggesbø, H. Stigum, M. P. Longnecker, A. Polder, M. Aldrin, O. Basso, C. Thomsen, J. U. Skaare, G. Becher, P. Magnus, Environ. Res. 2009, 109, 559.
| Crossref | GoogleScholarGoogle Scholar | 19410245PubMed |
[19] Stockholm Convention on Persistent Organic Pollutants. 2009 (Secretariat of the Stockholm Convention). Available from: http://chm.pops.int/Convention/ConventionText/tabid/2232/Default.aspx (accessed August 2013).
[20] N. Behabtu, C. C. Young, D. E. Tsentalovich, O. Kleinerman, X. Wang, A. W. K. Ma, E. A. Bengio, R. F. ter Waarbeek, J. J. de Jong, R. E. Hoogerwerf, S. B. Fairchild, J. B. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M. J. Otto, M. Pasquali, Science 2013, 339, 182.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVCgtg%3D%3D&md5=807444c24e60d35066723f82e40533fbCAS | 23307737PubMed |