Luminescent P-Benzyl Dithienophospholes – A Joint Experimental and Theoretical Investigation
Zisu Wang A , Alva Y. Y. Woo A and Thomas Baumgartner A BA Department of Chemistry and Centre for Advanced Solar Materials, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
B Corresponding author. Email: thomas.baumgartner@ucalgary.ca
Australian Journal of Chemistry 66(10) 1171-1178 https://doi.org/10.1071/CH13220
Submitted: 30 April 2013 Accepted: 20 May 2013 Published: 26 June 2013
Abstract
A series of P-benzyl functionalised dithieno[3,2-b:2′,3′-b]phospholes with different substitution pattern at the phosphorus as well as the conjugated scaffold was synthesised and characterised via optical spectroscopy. Single crystal X-ray crystallography was performed on one species. The experimentally observed data were solidified with density functional theory calculations. In contrast to related benzylated P-phenyl phospholium species, the new systems show pronounced photoluminescence in solution, with the exception of the phosphole sulfide species. The observed photophysics could be explained with dominating π→π* transitions, despite the presence of the benzyl group that had been found to quench the fluorescence in the predecessor benzyl system with P-phenyl substituent.
References
[1] (a) Organic Light Emitting Diodes (Eds K. Müllen, U. Scherf) 2005 (Wiley-VCH: Weinheim).(b) J. E. Anthony, Angew. Chem. Int. Ed. 2008, 47, 452.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Mishra, P. Bäuerle, Angew. Chem. Int. Ed. 2012, 51, 2020.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. R. Wade, A. E. J. Broomsgrove, S. Aldridge, F. P. Gabbaï, Chem. Rev. 2010, 110, 3958.
| Crossref | GoogleScholarGoogle Scholar |
(e) Functional Organic Materials (Eds T. J. J. Müller, U. H. F. Bunz) 2007 (Wiley-VCH: Weinheim).
(f) J. D. Tovar, Acc. Chem. Res. 2013, 46,
| Crossref | GoogleScholarGoogle Scholar |
(g) Y. N. Teo, E. T. Kool, Chem. Rev. 2012, 112, 4221.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) F. Jäkle, Chem. Rev. 2010, 110, 3985.
| Crossref | GoogleScholarGoogle Scholar | 20536123PubMed |
(b) M. J. D. Bosdet, W. E. Piers, Can. J. Chem. 2009, 87, 8.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Elbing, G. C. Bazan, Angew. Chem. Int. Ed. 2008, 47, 834.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. G. Campbell, A. J. V. Marwitz, S.-Y. Liu, Angew. Chem. Int. Ed. 2012, 51, 6074.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) T.-Y. Chu, J. Lu, S. Beaupré, Y. Zhang, J.-R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, Y. Tao, J. Am. Chem. Soc. 2011, 133, 4250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXislGls7Y%3D&md5=1c9492be43c90df289be5d68e1711bc7CAS | 21375331PubMed |
(b) J. Hou, H.-Y. Chen, S. Zhang, G. Li, Y. Yang, J. Am. Chem. Soc. 2008, 130, 16144.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Shimizu, H. Tatsumi, K. Mochida, K. Oda, T. Hiyama, Chem. – Asian J. 2008, 3, 1238.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) T. Baumgartner, R. Réau, Chem. Rev. 2006, 106, 4681.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyhtrjL&md5=3fa2616b1d4a48a03025887e9f237f89CAS | 17091932PubMed |
(b) J. Crassous, R. Réau, Dalton Trans. 2008, 6865.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Matano, H. Imahori, Org. Biomol. Chem. 2009, 7, 1258.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Fukazawa, S. Yamaguchi, Chem. – Asian J. 2009, 4, 1386.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. Ren, T. Baumgartner, Dalton Trans. 2012, 41, 7792.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) T. Baumgartner, T. Neumann, B. Wirges, Angew. Chem. Int. Ed. 2004, 43, 6197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKnurbK&md5=b7a0ebf2a416bb40db65f495a8211192CAS |
(b) T. Baumgartner, W. Bergmans, T. Kárpáti, T. Neumann, M. Nieger, L. Nyulászi, Chem. – Eur. J. 2005, 11, 4687.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. G. Hobbs, T. Baumgartner, Eur. J. Inorg. Chem. 2007, 3611.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. Romero-Nieto, T. Baumgartner, Synlett 2013, 24, 920.
| Crossref | GoogleScholarGoogle Scholar |
[6] Y. Ren, T. Baumgartner, J. Am. Chem. Soc. 2011, 133, 1328.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1aqtw%3D%3D&md5=ea3026a137fe0f80414fa49852fdfd11CAS | 21210689PubMed |
[7] Y. Ren, W. H. Kan, M. A. Henderson, P. G. Bomben, C. P. Berlinguette, V. Thangadurai, T. Baumgartner, J. Am. Chem. Soc. 2011, 133, 17014.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ClsLjJ&md5=cc4c025b54bebb54aa8d26ef75d281bbCAS | 21958374PubMed |
[8] Y. Ren, W. H. Kan, V. Thangadurai, T. Baumgartner, Angew. Chem. Int. Ed. 2012, 51, 3964.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFOkurg%3D&md5=d536597ed53342bd18f0163c25b195f5CAS |
[9] Y. Ren, T. Baumgartner, Inorg. Chem. 2012, 51, 2669.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVSqt70%3D&md5=617361baba36f1481968197c76704f9fCAS | 22283643PubMed |
[10] H. Usta, G. Lu, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2006, 128, 9034.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt12msbY%3D&md5=c9b82b7a498d8990565dfc4fa764ab27CAS | 16834367PubMed |
[11] Y. Dienes, S. Durben, T. Kárpáti, T. Neumann, U. Englert, L. Nyulászi, T. Baumgartner, Chem. – Eur. J. 2007, 13, 7487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyrtrrE&md5=a1c8a9b1e34ddbe6c431f20bcca3ad7fCAS | 17579902PubMed |
[12] Y. Dienes, M. Eggenstein, T. Neumann, U. Englert, T. Baumgartner, Dalton Trans. 2006, 1424.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVems7c%3D&md5=cb4b095d9beb83e126600665ede929fcCAS | 16518512PubMed |
[13] (a) F. Mathey, G. Müller, Can. J. Chem. 1978, 56, 2486.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXitlWktg%3D%3D&md5=16df4cda50c3820dd00de2f31a92bcffCAS |
(b) S. Durben, Y. Dienes, T. Baumgartner, Org. Lett. 2006, 8, 5893.
| Crossref | GoogleScholarGoogle Scholar |
[14] X. M. He, A. Y. Y. Woo, J. Borau-Gracia, T. Baumgartner, Chem. – Eur. J. 2013, 19, 7620.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFaqsLw%3D&md5=2995e2195abc05a4b59c1b264053a76cCAS |
[15] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Jr, Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, revision E.01; Gaussian Inc.: Wallingford, CT, 2007.
[16] Bruker SAINT 2007 (Bruker AXS Inc.: Madison, WI).
[17] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=c16dcfe329fce2375df65b1474a83185CAS | 18156677PubMed |