On the Bonding in Bis-pyridine Iodonium Cations*
Dayne C. Georgiou A , Phillip Butler A , Elisse C. Browne A , David J. D. Wilson A B and Jason L. Dutton A BA Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic. 3086, Australia.
B Corresponding authors. Email: david.wilson@latrobe.edu.au; j.dutton@latrobe.edu.au
Australian Journal of Chemistry 66(10) 1179-1188 https://doi.org/10.1071/CH13202
Submitted: 24 April 2013 Accepted: 20 May 2013 Published: 14 June 2013
Abstract
A study on the bonding in bis-pyridine halonium cations has been carried out using both theoretical and synthetic techniques. The primary thrust for the study is to highlight the opportunities potentially afforded by considering iodine as a Lewis acid in a classic coordination sense. Our results suggest that the iodine dipyridine complex ([pyr-I-pyr]+) can be considered as a coordination complex of [I]+. The lighter bromine and chlorine analogues are more towards the covalent rather than the dative side of bonding, while [pyr-F-pyr]+ is best described as an ion-molecule complex with one strong covalent F-pyr bond and one weak F-pyr dispersion interaction. Finally, theoretical and synthetic studies suggest that the commercially available [pyr-F]+ cation cannot be considered as a coordination complex of ‘F+’, despite its use as a source of electrophilic fluorine.
References
[1] H. Braunschweig, R. D. Dewhurst, K. Hammond, J. Mies, K. Radacki, A. Vargas, Science 2012, 336, 1420.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xotlequrs%3D&md5=5de725f212da25530338c40e2b4c1c00CAS | 22700924PubMed |
[2] Y. Wang, B. Quillian, P. Wei, C. S. Wannere, Y. Xie, R. B. King, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2007, 129, 12412.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGqt7jK&md5=b8bc420b33a832098c10c49b18e87edcCAS | 17887683PubMed |
[3] C. A. Dyker, V. Lavallo, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2008, 47, 3206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVCrsrY%3D&md5=508ed55496de4976703fb1a10763912aCAS |
[4] Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, Science 2008, 321, 1069.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSitrbO&md5=1be32ecaf4f369711dead57f46c930f1CAS | 18719279PubMed |
[5] R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, Angew. Chem. Int. Ed. 2009, 48, 5683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslOrtb8%3D&md5=b4fdc719ef0590cea0e288fbdb266b7fCAS |
[6] A. Sidiropoulos, C. Jones, A. Stasch, S. Klein, G. Frenking, Angew. Chem. Int. Ed. 2009, 48, 9701.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGru73K&md5=fdf23fca4cad135daddb1ccde6bd42d6CAS |
[7] P. A. Rupar, V. N. Staroverov, K. M. Baines, Science 2008, 322, 1360.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVagt7vO&md5=07677386ef25a25f8b2f653cf11cbc07CAS | 19039131PubMed |
[8] P. A. Rupar, V. N. Staroverov, P. J. Ragogna, K. M. Baines, J. Am. Chem. Soc. 2007, 129, 15138.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWmu7%2FO&md5=a1948e5429625cd9ed085fb12f77f169CAS | 18020343PubMed |
[9] C. Jones, A. Sidiropoulos, N. Holzmann, G. Frenking, A. Stasch, Chem. Commun. 2012, 48, 9855.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtleitrvM&md5=72bf4dd5a70fe288b152bfdc9b2d5106CAS |
[10] N. Holzmann, D. Dange, C. Jones, G. Frenking, Angew. Chem. Int. Ed. 2013, 52, 3004.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFensbw%3D&md5=ef8ec12f37d0b6ed75d8893a1dbd029bCAS |
[11] M. A. Celik, R. Sure, S. Klein, R. Kinjo, G. Bertrand, G. Frenking, Chem. – Eur. J. 2012, 18, 5676.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFyju74%3D&md5=4e9855e01cf8cf6708913ca4fef73611CAS | 22434609PubMed |
[12] Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer, P. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2008, 130, 14970.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1OjtLvP&md5=71d92f094bdc400f3bc60366b9bc3349CAS | 18937460PubMed |
[13] B. D. Ellis, C. L. B. Macdonald, Coord. Chem. Rev. 2007, 251, 936.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVels7o%3D&md5=0da4a2443e6ea8b316c01171a32966edCAS |
[14] J. Petuskova, M. Patil, S. Holle, C. W. Lehmann, W. Thiel, M. Alcarazo, J. Am. Chem. Soc. 2011, 133, 20758.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKktrbP&md5=14e9843bb02f73932219119a48bbe2c9CAS | 22136140PubMed |
[15] C. D. Martin, M. C. Jennings, M. J. Ferguson, P. J. Ragogna, Angew. Chem. Int. Ed. 2009, 48, 2210.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFems7g%3D&md5=6af44d657d2736ed2d65d78f76a55566CAS |
[16] C. D. Martin, C. M. Le, P. J. Ragogna, J. Am. Chem. Soc. 2009, 131, 15126.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1artLfI&md5=b56d89e3cfb6e7ae5f37e58ae91623e7CAS | 19803516PubMed |
[17] J. L. Dutton, H. M. Tuononen, P. J. Ragogna, Angew. Chem. Int. Ed. 2009, 48, 4409.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12isbY%3D&md5=0f05a8a567e94ae6d39d0fe1b168f83dCAS |
[18] P. Metrangolo, G. Resnati, Chem. – Eur. J. 2001, 7, 2511.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWnt70%3D&md5=759a0dec13beb3341c77cb39f7c1aea8CAS | 11465442PubMed |
[19] P. Metrangolo, H. Neukirch, T. Pilati, G. Resnati, Acc. Chem. Res. 2005, 38, 386.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlSitbY%3D&md5=10ffa1381db164f79f2a568e783e09a9CAS | 15895976PubMed |
[20] A. Haaland, Angew. Chem. Int. Ed. 1989, 28, 992.
| Crossref | GoogleScholarGoogle Scholar |
[21] http://goldbook.iupac.org/D01523.html (verified May 2013).
[22] J. Kleinberg, J. Chem. Educ. 1946, 23, 559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2sXksVKj&md5=cf53a334061ebdfb86430e79ecb84d1aCAS |
[23] J. Barluenga, F. Gonzalez-Bobes, M. C. Murguia, S. R. Ananthoju, J. M. Gonzalez, Chem. – Eur. J. 2004, 10, 4206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslCkur0%3D&md5=ecdae4d5bba2140353f7f636451c519eCAS | 15352103PubMed |
[24] J. M. Chalker, A. L. Thompson, B. G. Davis, Org. Synth. 2010, 87, 288.
| 1:CAS:528:DC%2BC3MXhtFSqt7nI&md5=19d9c7605858e7105061c7b2639a31b7CAS |
[25] A. C. Carlsson, J. Grafenstein, J. L. Laurila, J. Bergquist, M. Erdelyi, Chem. Commun. 2012, 48, 1458.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtF2ltw%3D%3D&md5=6bbb58d067ed66aeb826401ef2accc9eCAS |
[26] N. W. Alcock, G. B. Robertson, Dalton Trans. 1975, 2483.
| 1:CAS:528:DyaE28Xot1ygsg%3D%3D&md5=0caea0c81064bf0281515934c988be18CAS |
[27] R. Weiss, J. Seubert, Angew. Chem. Int. Ed. 1994, 33, 891.
| Crossref | GoogleScholarGoogle Scholar |
[28] T. P. Pell, S. A. Couchman, S. Ibrahim, D. J. D. Wilson, B. J. Smith, P. J. Barnard, J. L. Dutton, Inorg. Chem. 2012, 51, 13034.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Kntb3L&md5=b6ea9ab57b9f9fa85ac1f40b07a37932CAS | 23148595PubMed |
[29] J. M. Slattery, S. Hussein, Dalton Trans. 2012, 41, 1808.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpslyhtA%3D%3D&md5=76ca1bd8c3a6a2c54c7edcb282ff353dCAS | 22159000PubMed |
[30] T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory 2000 (John Wiley & Sons: Chichester).
[31] F. A. Cotton, P. A. Kibala, J. Am. Chem. Soc. 1987, 109, 3308.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksF2itro%3D&md5=6ef8a12efed8260ad0ef77d8623e0b00CAS |
[32] W. I. Cross, S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard, J. M. Sheffield, G. M. Thompson, J. Chem. Soc., Dalton Trans. 1999, 2795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvFKitbs%3D&md5=01f242a20edbf11994084fe1c7214ee0CAS |
[33] S. M. Godfrey, D. G. Kelly, C. A. McAuliffe, A. G. Mackie, R. G. Pritchard, S. M. Watson, J. Chem. Soc. Chem. Commun. 1991, 1163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtVyisrc%3D&md5=581e4a39085c6940bab95af1134b6939CAS |
[34] N. Bricklebank, S. M. Godfrey, A. G. Mackie, C. A. McAuliffe, R. G. Pritchard, P. J. Kobryn, J. Chem. Soc., Dalton Trans. 1993, 101.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvFWrt7w%3D&md5=e55f6544f1c99ef6f352ab116a5096cdCAS |
[35] M. von Hopffgarten, G. Frenking, WIREs Comput. Mol. Sci. 2012, 2, 43.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFGls70%3D&md5=a8beab808b556da10142adf876ba78e5CAS |
[36] D. Nemcsok, K. Wichmann, G. Frenking, Organometallics 2004, 23, 3640.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsF2mtLY%3D&md5=f333f65dd95ad4da4bd186fcfafec566CAS |
[37] G. Frenking, K. Wichmann, N. Fröhlich, J. Grobe, W. Golla, D. Le Van, B. Krebs, M. Läge, Organometallics 2002, 21, 2921.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xkt1Krurg%3D&md5=15b9dddcbfa726343f378add841945cbCAS |
[38] S. Klein, R. Tonner, G. Frenking, Chem. – Eur. J. 2010, 16, 10160.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2qsb3L&md5=d594e11c6f3619ec55b1f10249c9b7bfCAS | 20645329PubMed |
[39] R. Bandyopadhyay, J. H. Nguyen, A. Swidan, C. L. B. Macdonald, Angew. Chem. Int. Ed. 2013, 52, 3469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVSrtro%3D&md5=0a58bce679e9cd656f7e6264c9c88abaCAS |
[40] I. Tornieporth-Oetting, T. Klapotke, J. Passmore, Z. Anorg. Allg. Chem. 1990, 586, 93.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1Gkug%3D%3D&md5=1251aa0d88ae3e3841ecb2aa9d229366CAS |
[41] J. C. Avery, M. A. Hanson, R. H. Herber, K. J. Bladek, P. A. Rupar, I. Nowik, Y. Huang, K. M. Baines, Inorg. Chem. 2012, 51, 7306.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlSgsLY%3D&md5=0124f43fc4366f29cd46483894021ff6CAS | 22686452PubMed |
[42] A. A. Neverov, H. X. Feng, K. Hamilton, R. S. Brown, J. Org. Chem. 2003, 68, 3802.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFyhtbk%3D&md5=ab0050fe233443240e1943e8d6c165f6CAS | 12737557PubMed |
[43] R. D. Bailey, G. W. Drake, M. Grabarczyk, T. W. Hanks, L. L. Hook, W. T. Pennington, J. Chem. Soc., Perkin Trans. 2 1997, 2773.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFWrtg%3D%3D&md5=e824951afd4c3ee3777794489084e5f6CAS |
[44] R. D. Bailey, M. Grabarczyk, T. W. Hanks, W. T. Pennington, J. Chem. Soc., Perkin Trans. 2 1997, 2781.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFWqsw%3D%3D&md5=71bd6a4af3e49a814a8481a4eb278748CAS |
[45] L. J. McAllister, C. Prasang, J. P. W. Wong, R. J. Thatcher, A. C. Whitwood, B. Donnio, P. O’Brien, P. B. Karadakov, D. W. Bruce, Chem. Commun. 2013, 49, 3946.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVWrtL0%3D&md5=bf20895214fbe1701899200ca2e9b70cCAS |
[46] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.1 2009 (Gaussian, Inc.: Wallingford, CT).
[47] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=20a8799ec44c7ce60eef088008c1bc09CAS |
[48] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFWgu7o%3D&md5=89ac773261b3e4e651bbf99c23922a95CAS | 16240044PubMed |
[49] E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, NBO 5.9 2011 (Theoretical Chemistry Institute, University of Wisconsin: Madison, WI). Available at http://www.chem.wisc.edu/~nbo5 (verified May 2013).
[50] S. Grimme, J. Chem. Phys. 2003, 118, 9095.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1Gktbk%3D&md5=ff2ce167673ff6e6236c7c2c79fcd8bfCAS |
[51] Y. Jung, R. C. Lochan, A. D. Dutoi, M. Head-Gordon, J. Chem. Phys. 2004, 121, 9793.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslCitb0%3D&md5=d273bc16cf2cf65abe4e5f33f57c0115CAS | 15549852PubMed |
[52] G. Scalmani, M. J. Frisch, J. Chem. Phys. 2010, 132, 114110.
| Crossref | GoogleScholarGoogle Scholar | 20331284PubMed |
[53] E. J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, S. Gusarov, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, J. W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M. V. Krykunov, E. van Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, J. I. Rodríguez, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, ADF2012 2012 (SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam). Available at http://www.scm.com.