Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Preparation and Structures of Group 12 and 14 Element Halide–Carbene Complexes

S. M. Ibrahim Al-Rafia A , Paul A. Lummis A , Anindya K. Swarnakar A , Kelsey C. Deutsch A , Michael J. Ferguson A , Robert McDonald A and Eric Rivard A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada.

B Corresponding author. Email: erivard@ualberta.ca

Australian Journal of Chemistry 66(10) 1235-1245 https://doi.org/10.1071/CH13209
Submitted: 26 April 2013  Accepted: 11 June 2013   Published: 1 August 2013

Abstract

The synthesis of a series of N-heterocyclic carbene (NHC) complexes involving zinc, cadmium, and the heavy Group 14 elements germanium, tin, and lead is reported. The direct reaction between the bulky carbene IPr (IPr = (HCNDipp)2C:, Dipp = 2,6-iPr2C6H3) and the Group 14 halide reagents GeCl4 and SnCl4 afforded the 1 : 1 complexes IPr·ECl4 (E = Ge and Sn) in high yield; similarly, ZnI2 interacted with IPr in THF to give the THF-bound complex IPr·ZnI2·THF. CdCl2 underwent divergent chemistry with IPr and the major product isolated was the imidazolium salt [IPrH][IPr·CdCl3], which could be converted into IPr·CdCl2·THF upon treatment with Tl[OTf]. In addition, the stable PbII amide adduct, IPr·PbBr(NHDipp), was prepared. Each of the new carbene–element halide adducts was treated with the hydride sources Li[BH4] and Li[HBEt3] in order to potentially access new element hydride adducts and/or clusters. In most instances scission of the element–carbene bonds transpired, except in the case of IPr·ZnI2·THF, which reacted with two equivalents of Li[BH4] to yield the thermally stable bis(borohydride) zinc complex IPr·Zn(BH4)2.


References

[1]  (a) A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt1Sjuw%3D%3D&md5=4d532b5b8e1dec052326aff735fcd07aCAS |
      (b) A. J. Arduengo, H. V. Rasika Dias, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1992, 114, 5530.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) For an early report of a stable acyclic carbene, see: A. Igau, H. Grutzmacher, A. Baceiredo, G. Bertrand, J. Am. Chem. Soc. 1988, 110, 6463.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) S. Díez-González, N. Marion, S. P. Nolan, Chem. Rev. 2009, 109, 3612.
         | Crossref | GoogleScholarGoogle Scholar | 19588961PubMed |
      (b) C. M. Crudden, D. P. Allen, Coord. Chem. Rev. 2004, 248, 2247.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) N. Kuhn, A. Al-Sheikh, Coord. Chem. Rev. 2005, 249, 829.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVWrsrw%3D&md5=e9cf67bc1d529931ab7e043bafde1326CAS |
      (b) R. Wolf, W. Uhl, Angew. Chem. Int. Ed. 2009, 48, 6774.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Wang, G. H. Robinson, Chem. Commun. 2009, 5201.
      (d) Y. Wang, G. H. Robinson, Inorg. Chem. 2011, 50, 12326.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) D. Martin, M. Melaimi, M. Soleilhavoup, G. Bertrand, Organometallics 2011, 30, 5304.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, Science 2008, 321, 1069.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSitrbO&md5=1be32ecaf4f369711dead57f46c930f1CAS | 18719279PubMed |

[5]  (a) A. Sidiropoulos, C. Jones, A. Stasch, S. Klein, G. Frenking, Angew. Chem. Int. Ed. 2009, 48, 9701.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGru73K&md5=fdf23fca4cad135daddb1ccde6bd42d6CAS |
      (b) C. Jones, A. Sidiropoulos, N. Holzmann, G. Frenking, A. Stasch, Chem. Commun. 2012, 48, 9855.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) For the recent formation of tetrelylones bis adducts (LB·E·LB; E = Si and Ge; LB = Lewis base), see: K. C. Mondal, H. W. Roesky, M. C. Schwarzer, G. Frenking, B. Niepötter, H. Wolf, R. Herbst-Irmer, D. Stalke, Angew. Chem. Int. Ed. 2013, 52, 2963.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFCmsg%3D%3D&md5=569f834aed58d8945c9b6fc3d8a26793CAS |
      (b) Y. Xiong, S. Yao, G. Tan, S. Inoue, M. Driess, J. Am. Chem. Soc. 2013, 135, 5004.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  H. Braunschweig, R. D. Dewhurst, K. Hammond, J. Mies, K. Radacki, A. Vargas, Science 2012, 336, 1420.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xotlequrs%3D&md5=5de725f212da25530338c40e2b4c1c00CAS | 22700924PubMed |

[8]  K. C. Thimer, S. M. I. Al-Rafia, M. J. Ferguson, R. McDonald, E. Rivard, Chem. Commun. 2009, 7119.
         | 1:CAS:528:DC%2BD1MXhsVagsrzE&md5=999488dae8cd36880704949f5c7f916fCAS |

[9]  (a) S. M. I. Al-Rafia, A. C. Malcolm, S. K. Liew, M. J. Ferguson, E. Rivard, J. Am. Chem. Soc. 2011, 133, 777.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WqtLvL&md5=52ccf7ba3b8bee90285ea260c300f75bCAS |
      (b) S. M. I. Al-Rafia, O. Shynkaruk, S. M. McDonald, S. K. Liew, M. J. Ferguson, R. McDonald, R. H. Herber, E. Rivard, Inorg. Chem. 2013, 52, 5581.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) M. Y. Abraham, Y. Wang, Y. Xie, P. Wei, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2011, 133, 8874.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFymtL4%3D&md5=59cd8f9667eb0a7756d34c5d828a97fdCAS | 21595479PubMed |
      (b) S. M. I. Al-Rafia, A. C. Malcolm, R. McDonald, M. J. Ferguson, E. Rivard, Chem. Commun. 2012, 48, 1308.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  S. M. I. Al-Rafia, A. C. Malcolm, R. McDonald, M. J. Ferguson, E. Rivard, Angew. Chem. Int. Ed. 2011, 50, 8354.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVehsr8%3D&md5=8ad55b0b7581c61064aac1b12ed1dc1aCAS |

[12]  (a) For selected recent advances in this area, see: R. Kinjo, B. Donnadieu, M. Ali Celik, G. Frenking, G. Bertrand, Science 2011, 333, 610.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1yisL0%3D&md5=8f613a0f820ee39de913c763551adad7CAS | 21798945PubMed |
      (b) B. Inés, M. Patil, J. Carreras, R. Goddard, W. Thiel, M. Alcarazo, Angew. Chem. Int. Ed. 2011, 50, 8400.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. J. Bonyhady, D. Collis, G. Frenking, N. Holzmann, C. Jones, A. Stasch, Nat. Chem. 2010, 2, 865.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. J. Weigand, K.-O. Feldmann, F. D. Henne, J. Am. Chem. Soc. 2010, 132, 16321.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) C. L. Dorsey, B. M. Squires, T. W. Hudnall, Angew. Chem. Int. Ed. 2013, 52, 4462.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  L. Jafarpour, E. D. Stevens, S. P. Nolan, J. Organomet. Chem. 2000, 606, 49.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsFKrt7s%3D&md5=c4411da98b54ba6a37e1694d3991f868CAS |

[14]  (a) T. R. Jensen, C. P. Schaller, M. A. Hillmyer, W. B. Tolman, J. Organomet. Chem. 2005, 690, 5881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CmtLbM&md5=883447d21dec5d79aa8cd3b36997ad31CAS |
      (b) B. Bantu, G. Manohar Pawar, U. Decker, K. Wurst, A. M. Schmidt, M. R. Buchmeiser, Chemistry 2009, 15, 3103.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. L. Arnold, I. J. Casely, Z. R. Turner, R. Bellabarba, R. B. Tooze, Dalton Trans. 2009, 7236,
      (d) Y. Lee, B. Li, A. H. Hoveyda, J. Am. Chem. Soc. 2009, 131, 11625.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) X. Liu, C. Cao, Y. Li, P. Guan, L. Yang, Y. Shi, Synlett 2012, 23, 1343.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) For a report of a carbene-zinc catalyst which activates CO2, see: O. Jacquet, X. Frogneux, C. Das Neves Gomes, T. Cantat, Chem. Sci. 2013, 4, 2127.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  C. Xu, R. T. Beeler, G. J. Grzybowski, A. V. G. Chizmeshya, D. J. Smith, J. Menéndez, J. Kouvetakis, J. Am. Chem. Soc. 2012, 134, 20756.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCjur%2FL&md5=533d20d23d36900d553448ae498cf128CAS | 23237361PubMed |

[16]  H.-J. Schönherr, H.-W. Wanzlick, Chem. Ber. 1970, 103, 1037.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  For a recent review of Group 12 element carbene complexes, see: S. Budagumpi, S. Endud, Organometallics 2013, 32, 1537.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtV2lt7k%3D&md5=9ed028bbf3e5fa2d83133edf7a487830CAS |

[18]  (a) N. P. Mankad, D. S. Laitar, J. P. Sadighi, Organometallics 2004, 23, 3369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1agtbk%3D&md5=08fdc164a3f03d9cbc32f1f6e50f5aa2CAS |
      (b) E. Y. Tsui, P. Müller, J. P. Sadighi, Angew. Chem. Int. Ed. 2008, 47, 8937.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. H. Lee, T. R. Cook, D. G. Nocera, Inorg. Chem. 2011, 50, 714.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. D. Abernethy, R. J. Baker, M. L. Cole, A. J. Davies, C. Jones, Transition Met. Chem. 2003, 28, 296.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. Rit, T. P. Spaniol, L. Maron, J. Okuda, Angew. Chem. Int. Ed. 2013, 52, 4664.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  A. Doddi, C. Gemel, R. W. Siedel, M. Winter, R. A. Fischer, Polyhedron 2013, 52, 1103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOqtb7F&md5=262f325400ea06ec30eb1e9a09bac8f3CAS |

[20]  For the synthesis of IMes·ZnCl2·THF (IMes = [(HCNMes)2C: Mes = 2,4,6-Me3C6H2), see: D. Wang, K. Wurst, M. Buchmeiser, J. Organomet. Chem. 2004, 689, 2123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVWjurc%3D&md5=d7cd5caa3df25eebe584bc5d436086a6CAS |

[21]  In one case, crystals of the THF-free adduct IPr·ZnI2 were isolated from a reaction mixture containing 1 and unreacted IPr. See the Supplementary Material for full crystallographic details of IPr·ZnI2 (CCDC 934972).

[22]  M. Ma, A. Sidiropoulos, L. Ralte, A. Stasch, C. Jones, Chem. Commun. 2013, 49, 48.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslCntrnL&md5=116941c3431e601a647cbc8149d4457cCAS |

[23]  A. J. Arduengo, J. R. Goerlich, F. Davidson, W. J. Marshall, Z. Naturforsch 1999, 54b, 1350.

[24]  Z. Zhu, R. C. Fischer, J. C. Fettinger, E. Rivard, M. Brynda, P. P. Power, J. Am. Chem. Soc. 2006, 128, 15068.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKrs7bJ&md5=6ded034d04a29321624d5661d364c756CAS | 17117840PubMed |

[25]  (a) For related examples of backbone C-H activation in NHC, see: J. I. Bates, P. Kennepohl, D. P. Gates, Angew. Chem. Int. Ed. 2009, 48, 9844.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2hsrvE&md5=23132a6d8203ffe2d32a2a0bd7feaef0CAS |
      (b) Y. Wang, Y. Xie, M. Y. Abraham, R. J. Gillard, Y. Wang, Y. Xie, M. Y. Abraham, R. J. Gillard, Y. Wang, Y. Xie, M. Y. Abraham, R. J. Gillard, Organometallics 2010, 29, 4778.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  We have noted that IPr and Cl2Ge·dioxane do react in THF to give spectroscopically pure IPr·GeCl2 (by 1H NMR) when the reaction times are limited to 30 min.

[27]  (a) R. J. Baker, A. J. Davies, C. Jones, M. Kloth, J. Organomet. Chem. 2002, 656, 203.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Gru74%3D&md5=787e65026306054415f024698c8b5ae9CAS |
      (b) E. D. Blue, T. B. Gunnoe, J. F. Peterson, P. D. Boyle, J. Organomet. Chem. 2006, 691, 5988.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. S. Ghadwal, R. Azhakar, H. W. Roesky, K. Pröpper, B. Dittrich, C. Goedecke, G. Frenking, Chem. Commun. 2012, 48, 8186.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  S. Pelz, F. Mohr, Organometallics 2011, 30, 383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyntQ%3D%3D&md5=ea3b11855966e0f9da82a64d3474babdCAS |

[29]  (a) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, Angew. Chem. Int. Ed. 2009, 48, 5683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslOrtb8%3D&md5=b4fdc719ef0590cea0e288fbdb266b7fCAS |
      (b) A. C. Filippou, O. Chernov, G. Schnakenburg, Angew. Chem. Int. Ed. 2009, 48, 5687.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  R. S. Ghadwal, S. S. Sen, H. W. Roesky, G. Tavcar, S. Merkel, D. Stalke, Organometallics 2009, 28, 6374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1KrtrbO&md5=ed0fc3bacc70f06799d4647a86776114CAS |

[31]  R. D. Shannon, Acta Crystallogr. 1976, 32A, 751.

[32]  S. M. I. Al-Rafia, R. McDonald, M. J. Ferguson, E. Rivard, Chemistry 2012, 18, 13810.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlKis7nF&md5=9701681e02d6c8128e6f00eb6b5456c7CAS |

[33]  F. Stabenow, W. Saak, M. Weidenbruch, Chem. Commun. 1999, 1131.
         | 1:CAS:528:DyaK1MXjsFWgurg%3D&md5=8f96e9d112e02fcff5b811cdf9021b5bCAS |

[34]  Currently there are no examples of stable Pb–H bonds involving lead in the +2 state: L. Pu, B. Twamley, P. P. Power, J. Am. Chem. Soc. 2000, 122, 3524.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVyku78%3D&md5=c71983948c70f04a762b92cc93c9eb2fCAS |

[35]  J. Monot, M. Makhlouf Brahmi, S. -H Ueng, C. Robert, M. Desage-El Murr, D. P. Curran, M. Malarcia, L. Fensterrbank, E. Lacôte, Org. Lett. 2009, 11, 4914.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SqtL7L&md5=f36d6d1a2823482e58c28a8f81ff7019CAS | 19799407PubMed |

[36]  (a) S. P. Kolesnikov, I. S. Rogozhin, O. M. Nefedov, Izv. Akad. Nauk SSSR [Khim] 1974, 10, 2379.
      (b) T. Fjeldberg, A. Halland, B. E. R. Schilling, M. F. Lappert, A. J. Thorne, J. Chem. Soc., Dalton Trans. 1986, 1551,

[37]  A. P. Singh, R. S. Ghadwal, H. W. Roesky, J. J. Holstein, B. Dittrich, J.-P. Demers, V. Chevelkov, A. Lange, Chem. Commun. 2012, 48, 7574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1Oltrk%3D&md5=cc877ba27bc152da97f4321b418f1076CAS |

[38]  (a) G. A. Koutsantonis, F. C. Iee, C. L. Raston, J. Chem. Soc. Chem. Commun. 1975, 1994.
      (b) R. J. Gilliard, M. Y. Abraham, Y. Wang, P. Wei, X. Xie, B. Quillian, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2012, 134, 9953.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  G. D. Barbaras, C. Dillard, A. E. Finholt, T. Wartik, K. E. Wilzbach, H. I. Schlesinger, J. Am. Chem. Soc. 1951, 73, 4585.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38Xis1Snug%3D%3D&md5=2025c978c979308c6d963ba16fb1eaf0CAS |

[40]  (a) H. Nöth, E. Wiberg, L. P. Winter, Z. Anorg. Allg. Chem. 1969, 370, 209.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. Tajbakhsh, M. M. Lakouraj, F. Mohanazadeh, A. Ahmadi-Nejhad, Synth. Commun. 2003, 33, 229.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVerur0%3D&md5=32bd3edcd3b0c9cb1240001cb646da4fCAS |

[42]  J. T. Patton, S. C. Feng, K. A. Abboud, Organometallics 2001, 20, 3399.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVChtLo%3D&md5=e4fa57578ebfd4541a7cc99f2f2088a3CAS |

[43]  Y. Wang, B. Quillian, P. Wei, C. S. Wannere, Y. Xie, R. B. King, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2007, 129, 12412.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGqt7jK&md5=b8bc420b33a832098c10c49b18e87edcCAS | 17887683PubMed |

[44]  H. Hope, Prog. Inorg. Chem. 1994, 41, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtFWqsbg%3D&md5=bb9456bff3ed5bc00f18ae3547099f99CAS |

[45]  G. M. Sheldrick, SADABS, version 2008/1; Universität Göttingen: Göttingen, Germany, 2008.

[46]  G. M. Sheldrick, TWINABS, version 2008/2; Universität Göttingen: Göttingen, Germany, 2008.

[47]  G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.

[48]  A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Cryst. 1999, 32, 115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFOrsbo%3D&md5=55cf028ec17bfae20ae728ca395b451cCAS |

[49]  G. M. Sheldrick, CELL_NOW, version 2008/2; Universität Göttingen: Göttingen, Germany, 2008.

[50]  G. M. Sheldrick, SAINT, version 7.68A; Bruker AXS Inc.: Madison WI, 2008.