Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Contrasting Reactivity of Mono- versus Bis-2,2,6,6-tetramethylpiperidide Lithium Aluminates Towards Polydentate Lewis Bases: Co-Complexation Versus Deprotonation

Ross Campbell A , Elaine Crosbie A , Alan R. Kennedy A , Robert E. Mulvey A B , Rachael A. Naismith A and Stuart D. Robertson A B
+ Author Affiliations
- Author Affiliations

A WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK.

B Corresponding authors. Email: r.e.mulvey@strath.ac.uk; stuart.d.robertson@strath.ac.uk

Australian Journal of Chemistry 66(10) 1189-1201 https://doi.org/10.1071/CH13157
Submitted: 5 April 2013  Accepted: 27 May 2013   Published: 3 July 2013

Abstract

Two closely related lithium alkylaluminium amides LiAl(TMP)2iBu2 and LiAl(TMP)iBu3 (TMP: 2,2,6,6-tetramethylpiperidide) have been compared in their reactivity towards six polydentate Lewis bases containing either N or O donor atoms or a mixed N,O donor set. Seven of the twelve potential organometallic products of these reactions, which were carried out in hexane solution, have been crystallographically characterised. Three of these structures, [Li(μ-Me2NCH2CHCH2CH2CHO)(μ-TMP)Al(iBu)2], [Li(μ-Me2NCH2CH2OCH2)(μ-TMP)Al(iBu)2], and [Li(μ-Me2NCH2CH2OCHCH2NMe2)(μ-TMP)Al(iBu)2] reveal that the bis-amide LiAl(TMP)2iBu2 deprotonates (aluminates) the multifunctional Lewis base selectively at the carbon atom adjacent to oxygen with the anion generated captured by the residue of the base. In contrast, the mono-amide LiAl(TMP)iBu3 in general fails to deprotonate the Lewis bases but instead forms co-complexes with them as evidenced by the molecular structures of [Me2NCH2CHCH2CH2CH2O·Li(μ-iBu)(μ-TMP)Al(iBu)2], [Me2NCH2CH2OMe·Li(μ-iBu)(μ-TMP)Al(iBu)2], and [MeOCH2CH2OMe·Li(μ-iBu)(μ-TMP)Al(iBu)2]. Providing an exception to this pattern, the mono-amide reagent deprotonates chiral R,R,-N,N,N′,N′-tetramethylcyclohexanediamine to afford [Li(μ-CH2NMeC6H10NMe2)2Al(iBu)2], the final complex to be crystallographically characterised. All new products have been spectroscopically characterised through 1H, 7 Li, and 13C NMR studies. Reaction mixtures have also been quenched with D2O and analysed by 2D NMR spectroscopy to ascertain the full metallation versus co-complexation picture taking place in solution.


References

[1]  L. Brandsma, H. D. Verkruijsse, Preparative Polar Organometallic Chemistry 1987 (Springer: Berlin).

[2]  B. J. Wakefield, Organolithium Methods 1988 (Academic Press: London).

[3]  M. Schlosser, Organometallics in Synthesis: A Manual, 2nd ed. 2002 (Wiley: Chichester).

[4]  J. Clayden, Organolithiums: Selectivity for Synthesis 2002 (Pergamon, Elsevier Science Ltd.: Oxford).

[5]  Z. Rappoport, I. Marek (Eds), The Chemistry of Organolithium Compounds 2004 (Wiley: New York, NY).

[6]  R. E. Mulvey, Organometallics 2006, 25, 1060.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotV2mtA%3D%3D&md5=d5fb1d4ff391dd075d4a82f2d2bad6c0CAS |

[7]  R. E. Mulvey, F. Mongin, M. Uchiyama, Y. Kondo, Angew. Chem. Int. Ed. 2007, 46, 3802.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFCgsLo%3D&md5=196309d26f0509ff2ef46bc1ceefcb22CAS |

[8]  R. E. Mulvey, Acc. Chem. Res. 2009, 42, 743.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFemurY%3D&md5=24be6929dd0bde5196cafeff5f4c1bffCAS | 19348412PubMed |

[9]  B. Haag, M. Mosrin, H. Ila, V. Malakhov, P. Knochel, Angew. Chem. Int. Ed. 2011, 50, 9794.For an alternative bimetallic approach to alumination, involving the use of LiCl as the lithium source rather than an organolithium reagent see the following excellent review:
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Cjs7jI&md5=5afc90e16cb4b73a2477239d065ddad1CAS |

[10]  G. Linti, H. Schnöckel, Coord. Chem. Rev. 2000, 206–207, 285.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. N. S. Rao, H. W. Roesky, G. Anantharaman, J. Organomet. Chem. 2002, 646, 4.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  H. W. Roesky, S. S. Kumar, Chem. Commun. 2005, 4027.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntlejs7Y%3D&md5=b3681bcdc77dded8f2be2dd401d993d7CAS |

[13]  R. E. Mulvey, D. R. Armstrong, B. Conway, E. Crosbie, A. R. Kennedy, S. D. Robertson, Inorg. Chem. 2011, 50, 12241.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlaqtb0%3D&md5=8a5cc2a5d2bf5c1d6860d4751fb762a8CAS | 21520928PubMed |

[14]  E. Crosbie, A. R. Kennedy, R. E. Mulvey, S. D. Robertson, Dalton Trans. 2012, 41, 1832.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpslyitw%3D%3D&md5=5aec15dc09c37d8ab8bca7c5e60c83ddCAS | 22159308PubMed |

[15]  B. Conway, E. Crosbie, A. R. Kennedy, R. E. Mulvey, S. D. Robertson, Chem. Commun. 2012, 48, 4674.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlslGrt7Y%3D&md5=9e06cb791ea107df53a3aebe5a118bafCAS |

[16]  M. Uchiyama, H. Naka, Y. Matsumoto, T. Ohwada, J. Am. Chem. Soc. 2004, 126, 10526.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVeitLg%3D&md5=1aeca7b0930429106ed72b30df95edfcCAS | 15327295PubMed |

[17]  H. Naka, M. Uchiyama, Y. Matsumoto, A. E. H. Wheatley, M. McPartlin, J. V. Morey, Y. Kondo, J. Am. Chem. Soc. 2007, 129, 1921.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1WqsLg%3D&md5=eedf6831f4137a08b6ddfef83d3b4154CAS | 17263527PubMed |

[18]  H. Naka, J. V. Morey, J. Haywood, D. J. Eisler, M. McPartlin, F. García, H. Kudo, Y. Kondo, M. Uchiyama, A. E. H. Wheatley, J. Am. Chem. Soc. 2008, 130, 16193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCgtbrJ&md5=b8b2036a5ef70a741708f6365e2ff271CAS | 18989965PubMed |

[19]  H. W. Gschwend, H. R. Rodriguez, Org. React. 1979, 26, 1.
         | 1:CAS:528:DyaL3cXitFGhu7Y%3D&md5=0b95cb076f48f5bc5dda8f10c1d94790CAS |

[20]  V. Snieckus, Chem. Rev. 1990, 90, 879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsFWqsrc%3D&md5=f08a3255d992a3be89e864954756ae99CAS |

[21]  M. C. Whisler, S. MacNeil, V. Snieckus, P. Beak, Angew. Chem. Int. Ed. 2004, 43, 2206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslOgtbs%3D&md5=bf53a6c0bdf336c91ad7f54257a08c02CAS |

[22]  The numbering system utilised in this paper has been adopted simply to demonstrate the component parts utilised to generate the product (number = initial base, letter = Lewis donor) and does not imply that these component parts are bound to one another by a simple Lewis donor–Lewis acceptor connection.

[23]  E. Crosbie, P. García-Álvarez, A. R. Kennedy, J. Klett, R. E. Mulvey, S. D. Robertson, Angew. Chem. Int. Ed. 2010, 49, 9388.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSls7rJ&md5=3d3349614fda34dc94893f6bbd715144CAS |

[24]  R. B. Bates, L. M. Kroposki, D. E. Potter, J. Org. Chem. 1972, 37, 560.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XpvVyguw%3D%3D&md5=6d4ac8a1652560b0253121b32c164a6fCAS |

[25]  A. Maercker, Angew. Chem. Int. Ed. Engl. 1987, 26, 972.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  A. M. Corrente, T. Chivers, Dalton Trans. 2008, 4840.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKrtrjK&md5=8bce2d30de355c24d54ca15bb9cdb07cCAS | 18766214PubMed |

[27]  B. Conway, J. García-Álvarez, E. Hevia, A. R. Kennedy, R. E. Mulvey, S. D. Robertson, Organometallics 2009, 28, 6462.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyktbjO&md5=a9bdab608f6eade75ede48b1e25e7778CAS |

[28]  J. García-Álvarez, E. Hevia, A. R. Kennedy, J. Klett, R. E. Mulvey, Chem. Commun. 2007, 2402.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  J. García-Álvarez, D. V. Graham, A. R. Kennedy, R. E. Mulvey, S. Weatherstone, Chem. Commun. 2006, 3208.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  B. Conway, E. Hevia, J. García-Álvarez, D. V. Graham, A. R. Kennedy, R. E. Mulvey, Chem. Commun. 2007, 5241.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2gs73N&md5=2c2f3f3ef24173a2dcd1cb6a9f1b604eCAS |

[31]  B. Conway, A. R. Kennedy, R. E. Mulvey, S. D. Robertson, J. García-Álvarez, Angew. Chem. Int. Ed. 2010, 49, 3182.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslKku7Y%3D&md5=fe9ada04ed4eddb6f1b6af81b00829a7CAS |

[32]  H. J. Reich, W. S. Goldenberg, A. W. Sanders, ARKIVOC 2004, xiii, 97.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  G. J. P. Britovsek, J. England, A. J. P. White, Inorg. Chem. 2005, 44, 8125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVeqtLvN&md5=9f98bd4832993208fd6b17021fe7dd7eCAS |

[34]  J.-C. Kizirian, N. Cabello, L. Pinchard, J.-C. Caille, A. Alexakis, Tetrahedron 2005, 61, 8939.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXns1Shtbs%3D&md5=dd6bbe0fd5284abe99ae8868e64673e4CAS |

[35]  G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=c16dcfe329fce2375df65b1474a83185CAS | 18156677PubMed |

[36]  P. H. Kasai, J. Phys. Chem. A 2002, 106, 83.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslSntLw%3D&md5=463ab0d7a1968b5c7edc917ee5c0499dCAS |

[37]  C. A. Bradley, L. F. Veiros, P. J. Chirik, Organometallics 2007, 26, 3191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFSht7g%3D&md5=c1697670f4c2110b886cd869f94a5b92CAS |

[38]  G. B. Deacon, P. C. Junk, G. J. Moxey, Z. Anorg. Allg. Chem. 2008, 634, 2789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtVShsw%3D%3D&md5=5425971115acd65e3499686342e8a6fbCAS |

[39]  I. Korobkov, S. Gambarotta, Inorg. Chem. 2010, 49, 3409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisl2jsbo%3D&md5=a40d924cdefe14fb4379772644257837CAS | 20201603PubMed |

[40]  J. J. Fitt, H. W. Gschwend, J. Org. Chem. 1984, 49, 209.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmvVentw%3D%3D&md5=0c0cb53f3af0c2bfa8bf466f3e9a3e6aCAS |

[41]  R. E. Mulvey, Dalton Trans. 2013, 42, 6676.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVCisLk%3D&md5=33f124d1e75b9397c8bb5e360037d2d3CAS | 23450230PubMed |

[42]  T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 4685.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVWrsbc%3D&md5=e6294793f0645521b068b46da4b5228dCAS | 15796535PubMed |