Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Identification of Post-Translational Modifications by Mass Spectrometry

Armand G. Ngounou Wetie A , Izabela Sokolowska A , Alisa G. Woods A B and Costel C. Darie A C
+ Author Affiliations
- Author Affiliations

A Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA.

B Neuropsychology Clinic and Psychoeducation Services, SUNY Plattsburgh, Plattsburgh, NY, 12901, USA.

C Corresponding author. Email: cdarie@clarkson.edu




Armand G. Ngounou Wetie received his diploma in biotechnology (2008) from the Mannheim University of Applied Sciences, Germany, and a Master of Science degree in molecular biotechnology from the Technical University of Munich (TUM), Germany. Currently, Armand is a Ph.D. student in the Department of Chemistry and Biomolecular Science at Clarkson University (Potsdam, New York), where he is working on understanding the mode of action of the tumour differentiation factor (TDF) protein.



Izabela Sokolowska received her M.Sc. in biotechnology at Warsaw University of Life Sciences (2009) and currently she is a Ph.D. student in the Biochemistry and Proteomics Group at Clarkson University. Her research is focussed on the characterisation of newly discovered protein tumour differentiation factors (TDF) and mass spectrometry-based approaches in the analysis of proteins.



Dr Alisa Woods is a neurobiologist and mental health counsellor, and currently Research Assistant Professor in the Department of Chemistry and Biomolecular Science at Clarkson University, as well as Counsellor and Neuropsychology Researcher at the Neuropsychology Clinic/Psychoeducation Services, SUNY Plattsburgh, New York. The long-term goal of her research is to understand the connections between biochemistry and behaviour in neurodevelopmental disorders, including autism and ADHD. She is particularly interested in the identification of protein biomarkers for diagnosis and prognosis of neurodevelopmental disorders, and in their use for monitoring the psychotherapeutic/behavioural treatment of developmental disorders.



Dr Costel C. Darie is a biochemist and currently Assistant Professor and leader of the Biochemistry and Proteomics Group within the Department of Chemistry and Biomolecular Science at Clarkson University. He received his B.S. and M.S. in biochemistry from Iasi, Romania, and his Ph.D. in biochemistry from Freiburg, Germany. Dr Darie's main research interests are in new proteomics approaches for biomarker discovery and identification of post-translational modifications and protein–protein interactions. His research is also focussed on the investigation of one particular protein – the tumour differentiation factor protein.

Australian Journal of Chemistry 66(7) 734-748 https://doi.org/10.1071/CH13144
Submitted: 30 March 2013  Accepted: 17 May 2013   Published: 1 July 2013

Abstract

Proteins are the effector molecules of many cellular and biological processes and are thus very dynamic and flexible. Regulation of protein activity, structure, stability, and turnover is in part controlled by their post-translational modifications (PTMs). Common PTMs of proteins include phosphorylation, glycosylation, methylation, ubiquitination, acetylation, and oxidation. Understanding the biology of protein PTMs can help elucidate the mechanisms of many pathological conditions and provide opportunities for prevention, diagnostics, and treatment of these disorders. Prior to the era of proteomics, it was standard to use chemistry methods for the identification of protein modifications. With advancements in proteomic technologies, mass spectrometry has become the method of choice for the analysis of protein PTMs. In this brief review, we will highlight the biochemistry of PTMs with an emphasis on mass spectrometry.


References

[1]  R. Bischoff, H. Schluter, J. Proteomics 2012, 75, 2275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1Cqtrc%3D&md5=6f268f6f1e3780fb70a3f1bb2f6c5cd4CAS | 22387128PubMed |

[2]  Y. Takaoka, A. Ojida, I. Hamachi, Angew. Chem. Int. Ed. 2013, 52, 4088.
         | 1:CAS:528:DC%2BC3sXivVKhsLY%3D&md5=badc1f908e28e1eaf8b0757f0dbe6fa9CAS |

[3]  J. Schmutz, et al. Nature 2004, 429, 365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Ons7o%3D&md5=5ed9a655ef900d7986ce514ca9ee772eCAS | 15164052PubMed |

[4]  P. A. Cloos, S. Christgau, Matrix Biol. 2002, 21, 39.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVKqtro%3D&md5=7c812fe3c8ef05ffd3a6abf41d94239aCAS | 11827791PubMed |

[5]  K. Ohtsubo, J. D. Marth, Cell 2006, 126, 855.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVKitbo%3D&md5=86ed174b3931627b3a6db71e11f90950CAS | 16959566PubMed |

[6]  A. G. Ngounou Wetie, et al. Cell. Mol. Life Sci. 2013, advance article.
         | 23579629PubMed |

[7]  A. G. Ngounou Wetie, et al. Proteomics 2013, 13, 538.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSmu7k%3D&md5=403ca867a3f1594bbfa3dbd5b8a134e2CAS | 23193082PubMed |

[8]  A. G. Ngounou Wetie, et al. J Lab Autom 2013, 18, 19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislyiur8%3D&md5=92a91bc87268270939c2b3f24ab4c30fCAS | 22853965PubMed |

[9]  I. Sokolowska, et al. Proteome Sci. 2012, 10, 47.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFChtrs%3D&md5=d46170cbbd43db7df8dbc7140d6e1d7eCAS | 22857383PubMed |

[10]  A. G. Woods, et al. J. Cell. Mol. Med. 2012, 16, 1184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1SjsbzP&md5=bca4d8a09b45764a98c5afd03f26f5faCAS | 22304330PubMed |

[11]  A. G. Woods, et al. J. Mol. Psychiatry 2012, 1, 6.

[12]  A. G. Woods, et al., Blue Native PAGE and mass spectrometry as an approach for the investigation of stable and transient protein-protein interactions, in Oxidative Stress: Diagnostics and Therapy 2011, Chapter 12, pp. 341–367 (American Chemical Society: Washington, DC).

[13]  I. Sokolowska, et al., Mass Spectrometry for Proteomics-based Investigation of Oxidative Stress and Heat Shock Proteins, in Oxidative Stress: Diagnostics and Therapy 2011 Chapter 13, pp. 369–411 (American Chemical Society: Washington, DC).

[14]  A. G. Ngounou Wetie, et al. J. Mol. Psychiatry 2013, advance article.

[15]  J. V. Olsen, et al. Cell 2006, 127, 635.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WgtbzO&md5=2a64cf4247a9d0c42b6bced5bab3516aCAS | 17081983PubMed |

[16]  J. V. Olsen, et al. Sci. Signal. 2010, 3, ra3.
         | Crossref | GoogleScholarGoogle Scholar | 20068231PubMed |

[17]  G. Zhang, et al. J. Proteome Res. 2006, 5, 581.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSktLw%3D&md5=6830912c9245d647c8db54257224b923CAS | 16512673PubMed |

[18]  M. M. Rinschen, et al. Proc. Natl. Acad. Sci. USA 2010, 107, 3882.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFOksb8%3D&md5=e894eab8067680f62a0014ed442805dcCAS | 20139300PubMed |

[19]  G. T. Cantin, et al. J. Proteome Res. 2006, 5, 127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1yns7vI&md5=540924722a85550efdc85f27837a834aCAS | 16396503PubMed |

[20]  D. Hanahan, R. A. Weinberg, Cell 2000, 100, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1CktA%3D%3D&md5=380bd070c7d6b5d032c8ba9d21dc5ba7CAS | 10647931PubMed |

[21]  C. Pan, et al. Mol. Cell. Proteomics 2009, 8, 443.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt12jt7Y%3D&md5=1abc0167639ff79dc6029f95a6e0f80cCAS | 18952599PubMed |

[22]  J. Lee, et al. Cancer Cell 2006, 9, 391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltF2nsLk%3D&md5=22a7ee3def732a92842e37dbe642d7bcCAS | 16697959PubMed |

[23]  C. C. Darie, et al. Biochemistry 2004, 43, 7459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFCgtLw%3D&md5=c8b72313de3e196edcbba93636110e70CAS | 15182189PubMed |

[24]  C. C. Darie, et al. Proteomics 2011, 11, 4514.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOnu7bP&md5=ca62d41343e1fd51dcdf8dd64b7aac4eCAS | 21932443PubMed |

[25]  U. Roy, et al. Biotechnol. Appl. Biochem. 2012, 59, 445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitFyitQ%3D%3D&md5=1355a7d2a73912c6050cacfd685cdb7eCAS | 23586953PubMed |

[26]  I. Sokolowska, et al. Electrophoresis 2012, 33, 2527.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Sku7jI&md5=79535b10dc93b0d1b05c2b47f29db37fCAS | 22899260PubMed |

[27]  I. Sokolowska, et al. Biochim. Biophys. Acta 2013, advance article.
         | 23632316PubMed |

[28]  I. Sokolowska, et al. J. Lab. Autom. 2012, 17, 408.
         | 1:CAS:528:DC%2BC3sXhtV2msbk%3D&md5=67550f2be3900b208f5ec683d5821814CAS | 22885790PubMed |

[29]  I. Sokolowska, et al. J. Biol. Chem. 2012, 287, 1719.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlGmug%3D%3D&md5=bc401abead6a94971ba7f615ace294e2CAS | 22130669PubMed |

[30]  A. G. Woods, I. Sokolowska, C. C. Darie, Biochem. Biophys. Res. Commun. 2012, 419, 305.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVOgtbk%3D&md5=3de55c4aff6cb6cc18384945c8745d97CAS | 22342715PubMed |

[31]  R. Malik, et al. Proteomics 2010, 10, 1270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFalu7g%3D&md5=a2e1b61acc00ad4f2677c2336c926b42CAS | 20077408PubMed |

[32]  M. D. Plazas-Mayorca, et al. Mol. Biosyst. 2010, 6, 1719.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVWqtbjI&md5=db4ddcc8a03de46cd817befaae2a0adaCAS | 20577673PubMed |

[33]  I. Sokolowska, et al. Cell. Mol. Life Sci. 2013, advance article.
         | 23579629PubMed |

[34]  I. Sokolowska, et al. FEBS J. 2012, 279, 2579.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFKnurw%3D&md5=02be31291f892a5c9724b1919fcc4c3dCAS | 1:CAS:528:DC%2BC38XpvFKnurw%3D&md5=02be31291f892a5c9724b1919fcc4c3dCAS | 22613557PubMed |

[35]  B. A. Garcia, J. Am. Soc. Mass Spectrom. 2010, 21, 193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaksbw%3D&md5=8cd8171420482254be41f48e17731060CAS | 19942451PubMed |

[36]  J. Cannon, et al. J. Proteome Res. 2010, 9, 3886.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFyhtb4%3D&md5=b10eb251064975f975a553fae057b7c9CAS | 20557100PubMed |

[37]  J. Cox, M. Mann, Annu. Rev. Biochem. 2011, 80, 273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVCnsL4%3D&md5=00c67a337e670cbd43550a997229eea5CAS | 21548781PubMed |

[38]  P. Picotti, R. Aebersold, Nat. Methods 2012, 9, 555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVSrurg%3D&md5=0f37b54b68ce32f7236442ac171e7600CAS | 1:CAS:528:DC%2BC38XotVSrurg%3D&md5=0f37b54b68ce32f7236442ac171e7600CAS | 22669653PubMed |

[39]  J. E. Syka, et al. Proc. Natl. Acad. Sci. USA 2004, 101, 9528.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVahs70%3D&md5=abf0e5ee5d43d0eb0e8068663451ed7cCAS | 15210983PubMed |

[40]  N. L. Kelleher, et al. Anal. Chem. 1999, 71, 4250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt12ksLs%3D&md5=9a29c65e49e6864d883b8ba8a9c5c1ccCAS | 10517147PubMed |

[41]  W. D. Lehmann, et al. J. Proteome Res. 2007, 6, 2866.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsVKmtrk%3D&md5=0d9c81a0d2f6197edcd0128f2f75179eCAS | 17569551PubMed |

[42]  D. M. Good, et al. Mol. Cell. Proteomics 2007, 6, 1942.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVeisbvP&md5=91e9b979044ec7cf992d6900444e84e7CAS | 17673454PubMed |

[43]  C. Choudhary, M. Mann, Nat. Rev. Mol. Cell Biol. 2010, 11, 427.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVOmsLk%3D&md5=ccc3068f5460d6876ef2c09298692ba8CAS | 1:CAS:528:DC%2BC3cXlvVOmsLk%3D&md5=ccc3068f5460d6876ef2c09298692ba8CAS | 20461098PubMed |

[44]  K. Rikova, et al. Cell 2007, 131, 1190.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFGnsQ%3D%3D&md5=a045a314a4a4777159aca058b893f129CAS | 18083107PubMed |

[45]  G. Manning, et al. Trends Biochem. Sci. 2002, 27, 514.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVWqsbw%3D&md5=333c25b2241679eb8608515e1f73beb6CAS | 1:CAS:528:DC%2BD38XnsVWqsbw%3D&md5=333c25b2241679eb8608515e1f73beb6CAS | 12368087PubMed |

[46]  R. J. Deshaies, C. A. Joazeiro, Annu. Rev. Biochem. 2009, 78, 399.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1Ghur4%3D&md5=aa49dc7c7e206ae22a3cfbfd7a204d1dCAS | 19489725PubMed |

[47]  D. M. Creasy, J. S. Cottrell, Proteomics 2004, 4, 1534.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFGit7g%3D&md5=3f147772c0ca5ea9c82acb0aa5612782CAS | 1:CAS:528:DC%2BD2cXkvFGit7g%3D&md5=3f147772c0ca5ea9c82acb0aa5612782CAS | 15174123PubMed |

[48]  V. Akimov, et al. Mol. Biosyst. 2011, 7, 3223.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVahu7rI&md5=44e83755910a3e54ab7edfeb22c022fbCAS | 21956701PubMed |

[49]  T. Hunter, Mol. Cell 2007, 28, 730.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVWisA%3D%3D&md5=84ff875fb493a7bdbc2dcda2cb9e700cCAS | 18082598PubMed |

[50]  V. van Noort, et al. Mol. Syst. Biol. 2012, 8, 571.
         | Crossref | GoogleScholarGoogle Scholar | 22373819PubMed |

[51]  O. N. Jensen, Nat. Rev. Mol. Cell Biol. 2006, 7, 391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVylsb8%3D&md5=bfa389c767cbaf2c905096e2828320a7CAS | 16723975PubMed |

[52]  Z. A. Knight, et al. Nat. Biotechnol. 2003, 21, 1047.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmslCrsr0%3D&md5=8c1c9de153e503b5bd414568385bace5CAS | 12923550PubMed |

[53]  Y. Oda, T. Nagasu, B. T. Chait, Nat. Biotechnol. 2001, 19, 379.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1Smtr8%3D&md5=2a00b24c5e37eee61cd1ace939d5fd8eCAS | 11283599PubMed |

[54]  L. Wells, et al. Mol. Cell. Proteomics 2002, 1, 791.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovF2ktLo%3D&md5=907ab71e1608baab03c6b2bc58853a7cCAS | 12438562PubMed |

[55]  W. Li, et al. Anal. Biochem. 2003, 323, 94.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVWgurk%3D&md5=2462b3d2d937bb71416891b26888187eCAS | 14622963PubMed |

[56]  K. Zhang, et al. Proteomics 2004, 4, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVamtb0%3D&md5=8c0839af4d34e51fc21208ee195b20f5CAS | 14730666PubMed |

[57]  L. N. Johnson, D. Barford, Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsFCntbY%3D&md5=4b72917c5c28e475ffcc2c4954f92a1fCAS | 1:CAS:528:DyaK3sXlsFCntbY%3D&md5=4b72917c5c28e475ffcc2c4954f92a1fCAS | 8347989PubMed |

[58]  D. Barford, Trends Biochem. Sci. 1996, 21, 407.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xntlarur8%3D&md5=e73da43ef2f3c0ffe4e69140303f7099CAS | 1:CAS:528:DyaK28Xntlarur8%3D&md5=e73da43ef2f3c0ffe4e69140303f7099CAS | 8987393PubMed |

[59]  Z. Y. Zhang, Annu. Rev. Pharmacol. Toxicol. 2002, 42, 209.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvFKnsbo%3D&md5=c0aee5aaad1e34d16957b8f42b39f16aCAS | 1:CAS:528:DC%2BD38XhvFKnsbo%3D&md5=c0aee5aaad1e34d16957b8f42b39f16aCAS | 11807171PubMed |

[60]  T. E. Thingholm, et al. J. Proteome Res. 2008, 7, 3304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1yqtr0%3D&md5=2dfdc75edbb05ecef69ce339b43e7ff9CAS | 18578522PubMed |

[61]  S. Braconi Quintaje, S. Orchard, Mol. Cell. Proteomics 2008, 7, 1409.
         | Crossref | GoogleScholarGoogle Scholar | 18436524PubMed |

[62]  M. D. Jackson, J. M. Denu, Chem. Rev. 2001, 101, 2313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslCju7s%3D&md5=61feccd116303e020c53b9f671e77d69CAS | 1:CAS:528:DC%2BD3MXkslCju7s%3D&md5=61feccd116303e020c53b9f671e77d69CAS | 11749375PubMed |

[63]  K. L. Guan, J. E. Dixon, J. Biol. Chem. 1991, 266, 17026.
         | 1:CAS:528:DyaK3MXlsFekur4%3D&md5=1288b8a742cba47306242ef1d3901e88CAS |
         | 1:CAS:528:DyaK3MXlsFekur4%3D&md5=1288b8a742cba47306242ef1d3901e88CAS | 1654322PubMed |

[64]  A. K. Elsholz, et al. Proc. Natl. Acad. Sci. USA 2012, 109, 7451.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsVGntr4%3D&md5=a8207785044a02bfcd460408dbd6379aCAS | 22517742PubMed |

[65]  M. T. Laub, M. Goulian, Annu. Rev. Genet. 2007, 41, 121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1SjsQ%3D%3D&md5=04892c12b6e5ddfce342fcef7cc4a675CAS | 18076326PubMed |

[66]  R. S. Annan, S. A. Carr, Anal. Chem. 1996, 68, 3413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xlt12lsr4%3D&md5=c580de0023feda23438ed6e242dd2fe3CAS | 8843139PubMed |

[67]  N. Dephoure, et al. Proc. Natl. Acad. Sci. USA 2008, 105, 10762.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFOjur0%3D&md5=8d00d55997d3d271e01a9ee7ce997573CAS | 18669648PubMed |

[68]  C. S. Tan, et al. Science 2009, 325, 1686.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGqt7%2FI&md5=aff154d91b7018ae05b2fec5843cde37CAS | 1:CAS:528:DC%2BD1MXhtFGqt7%2FI&md5=aff154d91b7018ae05b2fec5843cde37CAS | 19589966PubMed |

[69]  K. Haglund, I. Dikic, EMBO J. 2005, 24, 3353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKns7zO&md5=3b52460a0ce0e406da354d391c3b95a7CAS | 1:CAS:528:DC%2BD2MXhtVKns7zO&md5=3b52460a0ce0e406da354d391c3b95a7CAS | 16148945PubMed |

[70]  C. M. Pickart, M. J. Eddins, Biochim. Biophys. Acta 2004, 1695, 55.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVantbzO&md5=618190ce839e3dd78ee1606c165c2988CAS | 1:CAS:528:DC%2BD2cXhtVantbzO&md5=618190ce839e3dd78ee1606c165c2988CAS | 15571809PubMed |

[71]  S. M. Nijman, et al. Cell 2005, 123, 773.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWntLjP&md5=d9ec4a13c9b1c5bfe0455ea56885d403CAS | 1:CAS:528:DC%2BD2MXhtlWntLjP&md5=d9ec4a13c9b1c5bfe0455ea56885d403CAS | 16325574PubMed |

[72]  V. G. Bhoj, Z. J. Chen, Nature 2009, 458, 430.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjs1KlsLc%3D&md5=b4426dab9b2142a8adc58bcbaf75122fCAS | 19325622PubMed |

[73]  G. Manning, et al. Science 2002, 298, 1912.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1Wisb0%3D&md5=64c076941f5748a5342795be748832a5CAS | 12471243PubMed |

[74]  A. Alonso, et al. Cell 2004, 117, 699.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlKisbc%3D&md5=7e28e45b2fb8f4c15f278d8c39448d81CAS | 15186772PubMed |

[75]  Y. Shi, Cell 2009, 139, 468.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKltL%2FK&md5=fdedcaadab006e61a9aa18adb72ca7b7CAS | 19879837PubMed |

[76]  J.M. Danielsen, et al. Mol Cell Proteomics 2011, 10, M110 003590.
         | 21139048PubMed |

[77]  L. Jin, et al. Nature 2012, 482, 495.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1Cjtbw%3D&md5=cb315454f660ccc94f399289d28d934eCAS | 22358839PubMed |

[78]  C. M. Pickart, Annu. Rev. Biochem. 2001, 70, 503.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVehtLw%3D&md5=7feef56ca5954b9756bbd06f6213e52fCAS | 11395416PubMed |

[79]  A. Motegi, et al. Proc. Natl. Acad. Sci. USA 2008, 105, 12411.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOhtrnM&md5=94f19ab10103a00d26ea03da4116da4dCAS | 18719106PubMed |

[80]  J. Peng, et al. Nat. Biotechnol. 2003, 21, 921.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVKgur0%3D&md5=985a12ed6e9de5b9171c9138d54a9252CAS | 12872131PubMed |

[81]  S.A. Wagner, et al. Mol Cell Proteomics 2011, 10, M111 013284.
         | 21890473PubMed |

[82]  W. Kim, et al. Mol. Cell 2011, 44, 325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKisbzL&md5=09479dc89ee2b76ba4dc36cfe306ef0fCAS | 21906983PubMed |

[83]  M. T. Bedford, S. G. Clarke, Mol. Cell 2009, 33, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOitrg%3D&md5=b5102e3a79a58095d040e9c2c1fafdc5CAS | 1:CAS:528:DC%2BD1MXhtFOitrg%3D&md5=b5102e3a79a58095d040e9c2c1fafdc5CAS | 19150423PubMed |

[84]  W. K. Paik, D. C. Paik, S. Kim, Trends Biochem. Sci. 2007, 32, 146.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisleisb4%3D&md5=59b633563b285290733cbc12cd53cf09CAS | 17291768PubMed |

[85]  Y. Ishikawa, D. B. Melville, J. Biol. Chem. 1970, 245, 5967.
         | 1:CAS:528:DyaE3MXpvVCi&md5=4fd9a6885ae27ff8459f31768b2e3964CAS |
         | 1:CAS:528:DyaE3MXpvVCi&md5=4fd9a6885ae27ff8459f31768b2e3964CAS | 5484456PubMed |

[86]  C. Wang, et al. Biochem. Biophys. Res. Commun. 2005, 331, 351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFChtL4%3D&md5=10c4ffd30f0bf0c86a3e920ea4ee4579CAS | 15845399PubMed |

[87]  H. Iwabata, M. Yoshida, Y. Komatsu, Proteomics 2005, 5, 4653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xktlegtg%3D%3D&md5=a4d2ff0565362205969604e7491406dbCAS | 16247734PubMed |

[88]  J. Rappsilber, et al. Anal. Chem. 2003, 75, 3107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1Cltr0%3D&md5=42f64708bcd2e3ba235adf52fe7c6ac6CAS | 12964758PubMed |

[89]  G. Hart-Smith, et al. J. Am. Soc. Mass Spectrom. 2012, 23, 1376.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGhsLjF&md5=f479d325636cbffd4f23c42192bbb263CAS | 1:CAS:528:DC%2BC38XhtVGhsLjF&md5=f479d325636cbffd4f23c42192bbb263CAS | 22673836PubMed |

[90]  A. P. Snijders, et al. J. Am. Soc. Mass Spectrom. 2010, 21, 88.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsl2jsg%3D%3D&md5=db9bb30cbe890f4bc3afe4599f279d89CAS | 19850496PubMed |

[91]  P. M. Gehrig, et al. J. Am. Soc. Mass Spectrom. 2004, 15, 142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptVChtA%3D%3D&md5=b4707ba5aac22a7812005bb13eea6a52CAS | 14766281PubMed |

[92]  M. A. Erce, et al. Proteomics 2012, 12, 564.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSnsLY%3D&md5=720a995ee6110c2c81915ea8c98d1bdaCAS | 22246820PubMed |

[93]  A. Darwanto, et al. J. Biol. Chem. 2010, 285, 21868.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1WrurY%3D&md5=86c379c9348be2549fa102ec93b7af09CAS | 20442396PubMed |

[94]  R. Apweiler, H. Hermjakob, N. Sharon, Biochim. Biophys. Acta 1999, 1473, 4.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsVKmt7o%3D&md5=8b0549d9aa6dc4c9b0ef98435290ed07CAS | 10580125PubMed |

[95]  R. Kornfeld, S. Kornfeld, Annu. Rev. Biochem. 1985, 54, 631.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M3nvVSjsA%3D%3D&md5=de389947db9cfd1170521a4c17151643CAS | 1:STN:280:DyaL2M3nvVSjsA%3D%3D&md5=de389947db9cfd1170521a4c17151643CAS | 3896128PubMed |

[96]  P. Stanley, Cold Spring Harb. Perspect. Biol. 2011, 3, pii: a005199.
         | Crossref | GoogleScholarGoogle Scholar |

[97]  A. Halim, et al. Proc. Natl. Acad. Sci. USA 2011, 108, 11848.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1ektro%3D&md5=9fcc152505f6ae02d65cf47841d9812cCAS | 21712440PubMed |

[98]  C. Steentoft, et al. Nat. Methods 2011, 8, 977.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12iu7rK&md5=5197ee977cd7a016613e2c4ab2b92647CAS | 1:CAS:528:DC%2BC3MXht12iu7rK&md5=5197ee977cd7a016613e2c4ab2b92647CAS | 21983924PubMed |

[99]  R. G. Spiro, J. Biol. Chem. 1969, 244, 602.
         | 1:CAS:528:DyaF1MXksVWrsw%3D%3D&md5=63a261fc81c5ba471997a13b9b879f50CAS |
         | 1:CAS:528:DyaF1MXksVWrsw%3D%3D&md5=63a261fc81c5ba471997a13b9b879f50CAS | 4305879PubMed |

[100]  R. G. Spiro, Glycobiology 2002, 12, 43R.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVyhtrY%3D&md5=4082f6eb27e7f01b468e01c2516928beCAS | 12042244PubMed |

[101]  C. A. Reis, et al. J. Clin. Pathol. 2010, 63, 322.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFOmsb4%3D&md5=312357060e88ddc9b5de9c0ae1f16144CAS | 20354203PubMed |

[102]  S. Aggarwal, Nat. Biotechnol. 2010, 28, 1165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2jsbrF&md5=7e51e25a04b5e9197d3f724cbedb93f3CAS | 1:CAS:528:DC%2BC3cXhtl2jsbrF&md5=7e51e25a04b5e9197d3f724cbedb93f3CAS | 21057482PubMed |

[103]  J. M. Prien, et al. Anal. Chem. 2010, 82, 1498.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Kgurw%3D&md5=7d553dc6c5d5044fd6cb1680e29ed68bCAS | 20108906PubMed |

[104]  J. M. Prien, B. D. Prater, S. L. Cockrill, Glycobiology 2010, 20, 629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Gkt74%3D&md5=7781bcb937141e2f95fe80cb499be2d3CAS | 20110246PubMed |

[105]  J. W. Froehlich, et al. Anal. Chem. 2011, 83, 5541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFSmsLg%3D&md5=5a704d550ff3c6c4a88e3d5b46c7b8bcCAS | 21661761PubMed |

[106]  C. C. Nwosu, et al. J. Proteome Res. 2011, 10, 2612.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVSrt7g%3D&md5=bb1aba53c03e68c421ece4ee1553e899CAS | 1:CAS:528:DC%2BC3MXltVSrt7g%3D&md5=bb1aba53c03e68c421ece4ee1553e899CAS | 21469647PubMed |

[107]  N. E. Scott, et al. Mol. Cell. Proteomics 2011, 10, M000031-MCP201.
         | Crossref | GoogleScholarGoogle Scholar | 20360033PubMed |

[108]  H. J. An, C. B. Lebrilla, Mass Spectrom. Rev. 2011, 30, 560.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1alsbg%3D&md5=f2fe412bbedfdebd9abeb2e609f38649CAS | 21656841PubMed |

[109]  K. Mariño, et al. Nat. Chem. Biol. 2010, 6, 713.
         | Crossref | GoogleScholarGoogle Scholar | 20852609PubMed |

[110]  J. V. Hunt, R. T. Dean, S. P. Wolff, Biochem. J. 1988, 256, 205.
         | 1:CAS:528:DyaL1cXmt1Ortrg%3D&md5=671f67f90b3b58c2df8d9f1b7e6183fbCAS |
         | 1:CAS:528:DyaL1cXmt1Ortrg%3D&md5=671f67f90b3b58c2df8d9f1b7e6183fbCAS | 2851978PubMed |

[111]  M. A. Smith, et al. Ann. N. Y. Acad. Sci. 1994, 738, 447.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjvV2ksb8%3D&md5=cc257c85a0444d2c8a59c2d9d4284e98CAS | 7832455PubMed |

[112]  J. K. Welply, et al. J. Biol. Chem. 1983, 258, 11856.
         | 1:CAS:528:DyaL2cXis1Ch&md5=afd476a98338e9d0c1f17e24ffa997e8CAS | 6413505PubMed |

[113]  S. Zhao, et al. Science 2010, 327, 1000.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVSjtbo%3D&md5=a64b66096147bcae1d4904e399cf48fbCAS | 20167786PubMed |

[114]  K. E. Wellen, et al. Science 2009, 324, 1076.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVKlsb8%3D&md5=b407eb4602d06e94f463d8c0fab4e1d9CAS | 19461003PubMed |

[115]  A. Ganesan, et al. Curr. Cancer Drug Targets 2009, 9, 963.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslKnsLc%3D&md5=2030d81d5d74a17fe2a5be30562f8484CAS | 20025605PubMed |

[116]  G. Li, D. Reinberg, Curr. Opin. Genet. Dev. 2011, 21, 175.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Gisbs%3D&md5=4202bab9a9c2f3661b9df1587e48d62fCAS | 21342762PubMed |

[117]  S. N. Khan, A. U. Khan, Clin. Chim. Acta 2010, 411, 1401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlGjsbs%3D&md5=5921fb2cbe33332405cb17ef7e4adf3bCAS | 1:CAS:528:DC%2BC3cXptlGjsbs%3D&md5=5921fb2cbe33332405cb17ef7e4adf3bCAS | 20598676PubMed |

[118]  N. Sato, et al. Cancer Res. 2003, 63, 4158.
         | 1:CAS:528:DC%2BD3sXlsFOis78%3D&md5=603d46e61d8f8bf9236b5faf7cfcf69fCAS |
         | 1:CAS:528:DC%2BD3sXlsFOis78%3D&md5=603d46e61d8f8bf9236b5faf7cfcf69fCAS | 12874021PubMed |

[119]  K. Balasubramanyam, et al. J. Biol. Chem. 2004, 279, 51163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVaqsrvE&md5=cd820abcefc48f46d08c11ccaa51c50dCAS | 1:CAS:528:DC%2BD2cXhtVaqsrvE&md5=cd820abcefc48f46d08c11ccaa51c50dCAS | 15383533PubMed |

[120]  S. Aggarwal, et al. Mol. Pharmacol. 2006, 69, 195.
         | 1:CAS:528:DC%2BD28XktlWnsQ%3D%3D&md5=3a44f1476b599688f716545af8bfdd30CAS | 16219905PubMed |

[121]  C. Choudhary, et al. Science 2009, 325, 834.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Ogt70%3D&md5=85a3a4fe40ac91d0dad7a900f61343d7CAS | 1:CAS:528:DC%2BD1MXps1Ogt70%3D&md5=85a3a4fe40ac91d0dad7a900f61343d7CAS | 19608861PubMed |

[122]  E. S. Witze, et al. Nat. Methods 2007, 4, 798.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2mtr7K&md5=b6535c2da211d31ac9b520304a711b91CAS | 17901869PubMed |

[123]  T. Finkel, J. Cell Biol. 2011, 194, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFKnt7k%3D&md5=af6d468c29127971de7b29c74218af53CAS | 21746850PubMed |

[124]  B. G. Hill, et al. J. Biol. Chem. 2010, 285, 19699.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFygsrw%3D&md5=7ef6997f0f3ffb9015a1cd255176145aCAS | 20410298PubMed |

[125]  A. Higdon, et al. Biochem. J. 2012, 442, 453.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivV2itbo%3D&md5=89866c506575e0f454d52d238954b7eeCAS | 22364280PubMed |

[126]  D. P. Jones, Y. M. Go, Diabetes Obes. Metab. 2010, 12, 116.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGgs7jE&md5=4bc3c565f875985410444b53ad7be12bCAS | 21029308PubMed |

[127]  P. Pacher, J. S. Beckman, L. Liaudet, Physiol. Rev. 2007, 87, 315.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVagsr8%3D&md5=2be77efc586ac1c02e78a40fb227c720CAS | 17237348PubMed |

[128]  Y. M. Go, et al. J. Proteomics Bioinform. 2011, 4, 196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Srsbg%3D&md5=e632677553680e025533a3431da5bb05CAS | 22605892PubMed |

[129]  S. G. Rhee, et al. J. Am. Soc. Nephrol. 2003, 14, 211S.
         | Crossref | GoogleScholarGoogle Scholar |

[130]  C. J. Martyniuk, et al. Chem. Res. Toxicol. 2011, 24, 2302.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKmsb7O&md5=62a9ea7e7b2bc30f7883c359c127cb55CAS | 22084934PubMed |

[131]  M. Renedo, et al. Biochemistry 2007, 46, 6607.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVKru7c%3D&md5=a593be1e8bd2a276c16263902314dc81CAS | 1:CAS:528:DC%2BD2sXltVKru7c%3D&md5=a593be1e8bd2a276c16263902314dc81CAS | 17489560PubMed |

[132]  D. P. Jones, J. Intern. Med. 2010, 268, 432.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFeqtbbP&md5=6b8d9fa50b293312fc0a5b736d1301adCAS | 20964735PubMed |

[133]  T. Toda, et al. Geriatr. Gerontol. Int. 2010, 10, S25.
         | Crossref | GoogleScholarGoogle Scholar | 20590839PubMed |

[134]  A. Michalski, J. Cox, M. Mann, J. Proteome Res. 2011, 10, 1785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVyksLw%3D&md5=91bdfd516f433d70b7b6cd44c2546cadCAS | 1:CAS:528:DC%2BC3MXisVyksLw%3D&md5=91bdfd516f433d70b7b6cd44c2546cadCAS | 21309581PubMed |

[135]  J. Cox, M. Mann, Nat. Biotechnol. 2008, 26, 1367.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWjtLzJ&md5=db70c1631cd9d292a22c10e4393b0a02CAS | 19029910PubMed |

[136]  R. Wu, et al. Nat. Methods 2011, 8, 677.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlCksLg%3D&md5=b07ac3ae501a78454b3f2b667ab010f4CAS | 1:CAS:528:DC%2BC3MXotlCksLg%3D&md5=b07ac3ae501a78454b3f2b667ab010f4CAS | 21725298PubMed |

[137]  A. Michalski, et al. Mol Cell Proteomics 2011, 10, M111 011015.
         | 21642640PubMed |

[138]  M. L. Nielsen, et al. Nat. Methods 2008, 5, 459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVOjtLc%3D&md5=3ce8c443314976e2631a732016f3adf4CAS | 1:CAS:528:DC%2BD1cXmsVOjtLc%3D&md5=3ce8c443314976e2631a732016f3adf4CAS | 18511913PubMed |

[139]  P. G. Righetti, J. Chromatogr. B 2006, 841, 14.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVSjs78%3D&md5=9787125286a83c6265d3811110ec0ce5CAS | 1:CAS:528:DC%2BD28XovVSjs78%3D&md5=9787125286a83c6265d3811110ec0ce5CAS |