Phosphenium-Insertion and Chloronium-Addition Reactions Involving the cyclo-Phosphanes (t-BuP)n (n = 3, 4)
Michael H. Holthausen A , Dane Knackstedt B C , Neil Burford B C D and Jan J. Weigand A DA Department of Chemistry and Food Chemistry, TU Dresden, Mommsenstr. 4, 01062 Dresden, Germany.
B Department of Chemistry, University of Victoria, PO Box 3065, Stn. CSC, Victoria, British Columbia, V8W 3V6, Canada.
C Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3, Canada.
D Corresponding authors. Email: nburford@uvic.ca; jan.weigand@tu-dresden.de
Australian Journal of Chemistry 66(10) 1155-1162 https://doi.org/10.1071/CH13141
Submitted: 29 March 2013 Accepted: 7 May 2013 Published: 31 May 2013
Abstract
The transfer of a Ph2P+-moiety provided by Ph2PCl and chloronium-addition with PCl5 or PhICl2 to the cyclo-phosphanes (t-BuP)n (n = 3 (4), 4 (5)) were investigated. The reactions strongly depend on the presence of GaCl3 or Me3SiOTf as a halide abstracting reagent. The reaction of 4 with Ph2PCl and GaCl3 quantitatively yields cation [Ph2P(t-BuP)3]+ (6+) as a GaCl4–-salt. Using Me3SiOTf as a halide abstracting reagent leads to the ring expansion of (t-BuP)3 (4) to tetrameric (t-BuP)4 (5) and cation 6+ is only formed as a minor product. Chloronium addition employing the PCl5/GaCl3 or PhICl2/Me3SiOTf systems as Cl+-sources to 4 gives complex reaction mixtures. In contrast, the Cl+-addition to 5 gives cation [Cl(t-BuP)4]+ (8+) quantitatively when the system PCl5/GaCl3 is used. Utilising PhICl2 in the presence of Me3SiOTf gives t-BuPCl2 as the main product.
References
[1] (a) C. A. Dyker, N. Burford, Chem. – Asian J. 2008, 3, 28.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Krtro%3D&md5=8d3013d25fb0bb0bfb7fb147425fcf39CAS | 18058962PubMed |
(b) N. Burford, P. J. Ragogna, J. Chem. Soc., Dalton Trans. 2002, 4307.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) I. Krossing, I. Raabe, Angew. Chem. Int. Ed. 2001, 40, 4406.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlWht70%3D&md5=e1e10083f3fb4fe11a1c2fcf35966e2cCAS |
(b) J. J. Weigand, M. H. Holthausen, R. Fröhlich, Angew. Chem. Int. Ed. 2009, 48, 295.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. H. Holthausen, J. J. Weigand, J. Am. Chem. Soc. 2009, 131, 14210.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. H. Holthausen, C. Richter, A. Hepp, J. J. Weigand, Chem. Commun. 2010, 46, 6921.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. H. Holthausen, K.-O. Feldmann, S. Schulz, A. Hepp, J. J. Weigand, Inorg. Chem. 2012, 51, 3374.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. H. Holthausen, J. J. Weigand, Z. Anorg. Allg. Chem. 2012, 638, 1103.
| Crossref | GoogleScholarGoogle Scholar |
(g) T. Köchner, T. A. Engesser, H. Scherer, D. A. Plattner, A. Steffani, I. Krossing, Angew. Chem. Int. Ed. 2012, 51, 6529.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) K. K. Laali, B. Geissler, M. Regitz, J. Org. Chem. 1995, 60, 3149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsFCjsLY%3D&md5=8775d96cd9e6f9ecba391071167f8467CAS |
(b) N. Burford, C. A. Dyker, M. Lumsden, A. Decken, Angew. Chem. Int. Ed. 2005, 44, 6196.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. A. Dyker, S. D. Riegel, N. Burford, M. D. Lumsden, A. Decken, J. Am. Chem. Soc. 2007, 129, 7464.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. A. Dyker, N. Burford, G. Menard, M. D. Lumsden, A. Decken, Inorg. Chem. 2007, 46, 4277.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) N. Burford, T. S. Cameron, D. J. LeBlanc, P. Losier, S. Sereda, G. Wu, Organometallics 1997, 16, 4712.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtF2ltbw%3D&md5=642ae70c3419c5014eea24537b277931CAS |
(b) N. Burford, T. S. Cameron, P. J. Ragogna, E. Ocando-Mavarez, M. Gee, R. McDonald, R. E. Wasylishen, J. Am. Chem. Soc. 2001, 123, 7947.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. Burford, P. J. Ragogna, R. McDonald, M. Ferguson, J. Am. Chem. Soc. 2003, 125, 14404.
| Crossref | GoogleScholarGoogle Scholar |
(d) N. Burford, P. J. Ragogna, R. McDonald, M. J. Ferguson, Chem. Commun. 2003, 2066.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. Carpenter, C. A. Dyker, N. Burford, M. D. Lumsden, A. Decken, J. Am. Chem. Soc. 2008, 130, 15732.
| Crossref | GoogleScholarGoogle Scholar |
[5] J. J. Weigand, N. Burford, M. D. Lumsden, A. Decken, Angew. Chem. Int. Ed. 2006, 118, 6745.
| Crossref | GoogleScholarGoogle Scholar |
[6] N. Burford, C. A. Dyker, A. Decken, Angew. Chem. Int. Ed. 2005, 44, 2364.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvFSksrY%3D&md5=febda66f5f1c954c8d5b03b2ddd9c87bCAS |
[7] Y.-Y. Carpenter, N. Burford, M. D. Lumsden, R. McDonald, Inorg. Chem. 2011, 50, 3342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVejsL8%3D&md5=f8218b4f2813e91aa01a3ca2d41c587aCAS | 21438505PubMed |
[8] M. Donath, E. Conrad, P. Jerabek, G. Frenking, R. Fröhlich, N. Burford, J. J. Weigand, Angew. Chem. Int. Ed. 2012, 51, 2964.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOqtbc%3D&md5=73e08d89fa39815c7f74dc9870535921CAS |
[9] K.-O. Feldmann, J. J. Weigand, Angew. Chem. Int. Ed. 2012, 51, 7545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1alsLs%3D&md5=e52fd3afb1174e3b0ba97a27cb18f9b6CAS |
[10] J. J. Weigand, N. Burford, R. J. Davidson, T. S. Cameron, P. Seelheim, J. Am. Chem. Soc. 2009, 131, 17943.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWhtr3E&md5=a6d587d5e8f21d1fcb311e5b8e48640bCAS | 19911789PubMed |
[11] M. Baudler, J. Hahn, H. Dietsch, G. Fürstenberg, Z. Naturforsch. C 1976, C31, 1305.
[12] K. Issleib, M. Hoffmann, Chem. Ber. 1966, 99, 1320.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XhtVCgtLY%3D&md5=92cd4287e59cf66d2408b5fffc8beb2dCAS |
[13] J. C. J. Bart, Acta Crystallogr. B 1969, 25, 762.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXktVOmtbo%3D&md5=3262af965ae1a80aa10362bb0a54c86cCAS |
[14] Wm. A. Henderson, M. Epstein, F. S. Seichter, J. Am. Chem. Soc. 1963, 85, 2462.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXksVWrsrg%3D&md5=fbf6859eaba6649db4e5627c467554c1CAS |
[15] (a) F. Sh. Shagvaleev, T. V. Zykova, R. I. Tarasova, T. Sh. Sitdikova, V. V. Moskva, Zh. Obshch. Khim. 1990, 60, 1775.
| 1:CAS:528:DyaK3MXkt12gtQ%3D%3D&md5=4fef7d6a453dc40a4657fa2e5d7ba830CAS |
(b) S. E. Johnson, C. B. Knobler, Phosphorus Sulfur 1996, 115, 227.
| Crossref | GoogleScholarGoogle Scholar |
[16] F. Scholz, D. Himmel, H. Scherer, I. Krossing, Chem. – Eur. J. 2013, 19, 109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsleisrvI&md5=8d58a8255be46075468c8ebbfa4bc7b1CAS | 23180742PubMed |
[17] B. Riegel, A. Pfitzner, G. Heckmann, H. Binder, Z. Anorg. Allg. Chem. 1995, 621, 1365.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntlCjt7Y%3D&md5=50844e0e9605809dbd4a0ecaa20f18d2CAS |
[18] B. Krassowska-Rwiebocka, G. Prokopienko, L. Skulski, Synlett 1999, 1999, 1409.
| Crossref | GoogleScholarGoogle Scholar |
[19] P. H. M. Budzelaar, gNMR for Windows (5.0.6.0) 2006 (IvorySoft).
[20] (a) H. C. E. McFarlane, W. McFarlane, J. Nash, Dalton Trans. 1980, 240.
| 1:CAS:528:DyaL3cXitFCnsrk%3D&md5=c4ca3e12f14176843a4397197d21ac91CAS |
(b) S. Aime, R. K. Harris, E. M. McVicker, M. Fild, Dalton Trans. 1976, 2144.
(c) M. A. M. Forgeron, M. Gee, R. E. Wasylishen, J. Phys. Chem. A 2004, 108, 4895.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. E. Del Bene, J. Elguero, I. Alkorta, J. Phys. Chem. A 2004, 108, 3662.
| Crossref | GoogleScholarGoogle Scholar |
[21] (a) SAINT 7.23A 2006 (Bruker AXS, Inc.: Madison, WI).
(b) G. M. Sheldrick, SADABS 2004 (Bruker AXS, Inc.: Madison, WI).
[22] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Determination 1997 (University of Göttingen: Göttingen).