Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Extremely Bulky Amido and Amidinato Complexes of Boron and Aluminium Halides: Synthesis and Reduction Studies

Edwin W.Y. Wong A , Deepak Dange A , Lea Fohlmeister A , Terrance J. Hadlington A and Cameron Jones A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, PO Box 23, Monash University, Melbourne, Vic. 3800, Australia.

B Corresponding author. Email: cameron.jones@monash.edu

Australian Journal of Chemistry 66(10) 1144-1154 https://doi.org/10.1071/CH13175
Submitted: 13 April 2013  Accepted: 7 May 2013   Published: 5 June 2013

Abstract

An extremely bulky secondary amine, HN(Ar)(SiPr3i) HL (Ar = C6H2{C(H)Ph2}2Pri−2,6,4) has been synthesised and deprotonated with KH in toluene, to afford the potassium amide [KL6-toluene)], which was structurally authenticated. Reaction of this with BBr3 and AlBr3, reproducibly gave the crystallographically characterised amido bromo-borane, [LB(H)Br], and aluminacycle, [AlBr22-C,N-N(H)(SiPr3i){C6H2[CPh2][C(H)Ph2]Pri-2,6,4}}], respectively, via ligand C–H activation processes. The known secondary amines, HN(Dip)(Mes) (HLMes) and HN(Dip)(Trip) (HLTrip) (Dip =2,6-diisopropylphenyl, Mes = mesityl, Trip = 2,4,6-triisopropylphenyl), have been structurally characterised, and deprotonated to give the in situ generated lithium amides, [Li(LMes)] and [Li(LTrip)]. Reaction of these with BBr3 and AlBr3 has given the amido group 13 element halide complexes, [LMesBBr2] and [LAlBr2(THF)] (L = LMes or LTrip), the crystal structures of all of which have been determined. Synthetic routes to two new bulky amidine pro-ligands, ArN = C(But)-N(H)Ar, Ar = C6H2{C(H)Ph2}2Me-2,6,4 (Piso*H) or C6H2Pr2i(CPh3)-2,6,4 (Piso″H), have been developed, and the compounds crystallographically characterised. Deprotonation of Piso″H gave the potassium amidinate, [K(Piso″)], which was reacted with BBr3 to give [(Piso″)BBr2]. Reaction of Piso″H with AlMe3 afforded [(Piso″)AlMe2], which, when treated with I2 yielded [(Piso″)AlI2], the crystal structure of which was determined. Reductions of all of the prepared amido and amidinato group 13 element(iii) halide complexes were attempted using a variety of reducing reagents, with a view to prepare boron(i) or aluminium(i) complexes. While these were not successful, this study does offer synthetic inorganic chemists a variety of new very bulky anionic N-donor ligands, and boron/aluminium halide complexes thereof, for use in their own research.


References

[1]     (a) Selected recent reviews: C. Jones, A. Stasch in The Group 13 Metals Aluminium, Gallium, Indium and Thallium. Chemical Patterns and Peculiarities 2011, Chapter 5 (Eds A.J. Downs, S. Aldridge) (Wiley-Blackwell, Chichester).
      (b) R. C. Fischer, P. P. Power, Chem. Rev. 2010, 110, 3877.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Schnöckel, Chem. Rev. 2010, 110, 4125.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) Selected recent reviews: M. Asay, C. Jones, M. Driess, Chem. Rev. 2011, 111, 354.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFaktrnK&md5=a460f962b069f69dd0836935027a74a6CAS | 21133370PubMed |
      (b) P. P. Power, Acc. Chem. Res. 2011, 44, 627.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. P. Power, Nature 2010, 463, 171.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  D. Dange, S. L. Choong, C. Schenk, A. Stasch, C. Jones, Dalton Trans. 2012, 41, 9304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVCmurvO&md5=623ea286bcfcb2395218e899f0665dbaCAS | 22539449PubMed |

[4]  R. J. Baker, C. Jones, J. Organomet. Chem. 2006, 691, 65.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSjtL%2FE&md5=d50462547ad977105af25020fa5ac7f7CAS |

[5]  (a) C. Jones, Coord. Chem. Rev. 2010, 254, 1273.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Gqtrw%3D&md5=c8b39a5e1e72662a1c6cfa03af7da6beCAS |
      (b) G. Jin, C. Jones, P. C. Junk, K.-A. Lippert, R. P. Rose, A. Stasch, New J. Chem. 2009, 33, 64.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) G. Jin, G. Jin, New J. Chem. 2008, 32, 835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1Sjt7Y%3D&md5=f5b9d6c6bad07aa8a597154648d02d32CAS |
      (b) C. Jones, P. C. Junk, J. A. Platts, A. Stasch, J. Am. Chem. Soc. 2006, 128, 2206.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. Jones, P. C. Junk, J. A. Platts, D. Rathmann, A. Stasch, Dalton Trans. 2005, 2497.

[7]  (a) J. Hicks, T. J. Haddlington, C. Schenk, J. Li, C. Jones, Organometallics 2013, 32, 323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKhurrM&md5=d9e2a3ff6c5115e4102437863c4fd73bCAS |
      (b) J. Li, A. Stasch, C. Schenk, C. Jones, Dalton Trans. 2011, 40, 10448.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) J. Li, C. Schenk, F. Winter, H. Scherer, N. Trapp, A. Higelin, S. Keller, R. Pöttgen, I. Krossing, C. Jones, Angew. Chem. Int. Ed. 2012, 51, 9557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yqu7jL&md5=f7ff22f3b3739e0b23a38c593908255aCAS |
      (b) J. Li, M. Hermann, G. Frenking, C. Jones, Angew. Chem. Int. Ed. 2012, 51, 8611.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Li, C. Schenk, C. Goedecke, G. Frenking, C. Jones, J. Am. Chem. Soc. 2011, 133, 18622.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  D. Dange, J. Li, C. Schenk, H. Schnöckel, C. Jones, Inorg. Chem. 2012, 51, 13050.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Ons7zN&md5=80d0cedc6557626566114e9b5a23b47bCAS | 23157174PubMed |

[10]  H. Braunschweig, R. D. Dewhurst, V. H. Gessner, Chem. Soc. Rev. 2013, 42, 3197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFemsLs%3D&md5=1cd17160b6e52139620bfa9e3d1cb0dcCAS | 23403460PubMed |

[11]  C. Jones, D. P. Mills, A. Stasch, W. D. Woodul, Main Group Chem. 2010, 9, 23.
         | 1:CAS:528:DC%2BC3cXpsFeiurk%3D&md5=df56d27351bb2a3b40045277d76c51c7CAS |

[12]  As determined from a survey of the Cambridge Crystallographic Database (CSD version 5.34), April, 2013.

[13]  A. Stasch, C. Jones, Dalton Trans. 2011, 40, 5659.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVagtb4%3D&md5=3f4f1def9c243e2ebb1e98c1280db8c9CAS | 21390353PubMed |

[14]  M. Schiefer, N. D. Reddy, H. W. Roesky, D. Vidovic, Organometallics 2003, 22, 3637.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVSit7w%3D&md5=ed6a7f16ca42ad4768b58aa81b478e2bCAS |

[15]  L. Zhu, Y.-M. Ye, L. X. Shao, Tetrahedron 2012, 68, 2414.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFOrurc%3D&md5=84a24402a15dfdd1cd0f61a48278a651CAS |

[16]  Multinuclear NMR 1987 (Ed J. Mason) (Plenum: New York, NY).

[17]  F. Zettler, H. Hess, Chem. Ber. 1975, 108, 2269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXltVKlu78%3D&md5=f01954050dd827c5c43d70d48cf7bd13CAS |

[18]  L. S. Bartell, F. B. Clippard, Inorg. Chem. 1970, 9, 2439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXltlCqsr0%3D&md5=e6c07108c1aaa41041606b14265082a7CAS |

[19]  X. Cheng, J. Zhang, H. Song, C. Cui, Organometallics 2008, 27, 678.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Sltr0%3D&md5=ec540ba475e59173d7f809317c0a6f19CAS |

[20]  T. Mennekes, P. Paetzold, R. Boese, Angew. Chem. Int. Ed. Engl. 1990, 29, 899.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) A. Meller, D. Bromm, W. Maringgele, A. Heine, D. Stalke, G. M. Sheldrick, J. Chem. Soc. Chem. Commun. 1990, 741.
         | 1:CAS:528:DyaK3cXltlaht7Y%3D&md5=8ca3f7f87b3f58fcda40c57bf40613afCAS |
      (b) A. Meller, U. Seebold, W. Maringgele, M. Noltemeyer, G. M. Sheldrick, J. Am. Chem. Soc. 1989, 111, 8299.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  S. J. Bonyhady, D. Collis, G. Frenking, N. Holzmann, C. Jones, A. Stasch, Nat. Chem. 2010, 2, 865.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2ms7fL&md5=da0ff1eb6e69692454d237774a5c6e9bCAS | 20861903PubMed |

[23]  C. Jones, P. C. Junk, M. Kloth, K. M. Proctor, A. Stasch, Polyhedron 2006, 25, 1592.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVansbw%3D&md5=1be9bdfb72b4978e84a219a6d2512201CAS |

[24]  A. Xia, H. M. El-Kaderi, M. J. Heeg, C. H. Winter, J. Organomet. Chem. 2003, 682, 224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslaksLo%3D&md5=1646543b026903e2de668b71360af22dCAS |

[25]  M. P. Coles, Dalton Trans. 2006, 985.
         | 1:CAS:528:DC%2BD28XhtlGktL0%3D&md5=69d0b4bdb321c4c02cede234b160cc14CAS | 16474883PubMed |

[26]  G. Berthon-Gelloz, M. A. Siegler, A. L. Spek, B. Tinant, J. N. H. Reek, I. Markó, Dalton Trans. 2010, 39, 1444.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFaltr0%3D&md5=48cfa08b5be4c36517740f16c9e0831dCAS | 20104298PubMed |

[27]  B. R. Dible, R. E. Cowley, P. L. Holland, Organometallics 2011, 30, 5123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFelu7bF&md5=c80144c28fbd1ab90bd781e11c0c96adCAS |

[28]  T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=1a9e6fbd2f7f2f1a7f4051d4bc8011faCAS | 12409628PubMed |

[29]  W. Kabsch, J. Appl. Cryst. 1993, 26, 795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXptFeltw%3D%3D&md5=dbf58e9ba5211250a976faa6d993cb68CAS |

[30]  G. M. Sheldrick, SHELX-97, University of Göttingen, 1997.