Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Reactivity of Half-Sandwich Ruthenium κ2-Aminoborane Complexes

David A. Addy A , Joshua I. Bates A , Michael J. Kelly A , Joseph Abdalla A , Nicholas Phillips A , Ian M. Riddlestone A and Simon Aldridge A B
+ Author Affiliations
- Author Affiliations

A Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.

B Corresponding author. Email: Simon.Aldridge@chem.ox.ac.uk

Australian Journal of Chemistry 66(10) 1211-1218 https://doi.org/10.1071/CH13106
Submitted: 5 March 2013  Accepted: 27 May 2013   Published: 27 June 2013

Abstract

Cationic half-sandwich ruthenium complexes featuring κ2-bound aminoborane ligands can readily be accessed from 16-electron precursors via chloride abstraction in the presence of H2BNR2 (R = iPr, Cy). Complexes [Cp*Ru(L)(κ2-H2BNR2)][BArf4] (2a: R = iPr, L = PCy3; 2b: R = iPr, L = PPh3; 2c: R = iPr, L = 1,3-bis-(2,4,6-trimethylphenyl)-imidazol-2-ylidene; 3a: R = Cy, L = PCy3; Arf = C6H3(CF3)2‐3,5) were isolated in yields of ~60 %, and characterised in the solid state by X-ray crystallography (for 2a, 2c, and 3a). Low-field 11B NMR shifts for the coordinated aminoborane fragment, together with short Ru⋯B contacts (of the order of 1.97 Å) imply a relatively tightly bound borane ligand, a finding which is given further credence by the results of density functional theory studies (e.g. bond dissociation energies in the range 24 kcal mol–1; 1 kcal mol–1 = 4.186 kJ mol–1). In terms of reactivity, κ2 systems of this type, while potentially offering a versatile route to asymmetric κ1 systems, in fact undergo borane extrusion even in the presence of a single equivalent of added ligand.


References

[1]  (a) For recent reviews of BN-containing materials see, for example: T. J. Clark, K. Lee, I. Manners, Chem. – Eur. J. 2006, 12, 8634.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlShtbvN&md5=56efb7ce9e35f9254f028173cb431d3aCAS | 17103467PubMed |
      (b) T. B. Marder, Angew. Chem., Int. Ed. 2007, 46, 8116.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. H. Stephens, V. Pons, R. T. Baker, Dalton Trans. 2007, 2613.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. W. Hamilton, R. T. Baker, A. Staubitz, I. Manners, Chem. Soc. Rev. 2009, 38, 279.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) N. C. Smythe, J. C. Gordon, Eur. J. Inorg. Chem. 2010, 509.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) A. Staubitz, A. P. M. Robertson, M. E. Sloan, I. Manners, Chem. Rev. 2010, 110, 4023.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) A. Staubitz, A. P. M. Robertson, I. Manners, Chem. Rev. 2010, 110, 4079.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) For early examples of the metal-catalysed formation of poly(methylaminoborane) see: A. Staubitz, A. P. Soto, I. Manners, Angew. Chem. Int. Ed. 2008, 47, 6212.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFSgt7s%3D&md5=0bd929a8e0dcd1102e2f0baff13a8b39CAS |
      (b) A. Staubitz, M. E. Sloan, A. P. M. Robertson, A. Friedrich, S. Schneider, P. J. Gates, J. S. A. D. Guenne, I. Manners, J. Am. Chem. Soc. 2010, 132, 13332.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) For recent reviews of σ-borane complexes see, for example: R. N. Perutz, S. Sabo-Etienne, Angew. Chem. Int. Ed. 2007, 46, 2578.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVWrtrg%3D&md5=80306925bac6d212b800c5e69b4f730fCAS |
      (b) Z. Lin, Struct. Bond. 2008, 130, 123.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. Alcaraz, S. Sabo-Etienne, Coord. Chem. Rev. 2008, 252, 2395.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) K. K. Pandey, Coord. Chem. Rev. 2009, 253, 37.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) G. Alcaraz, M. Grellier, S. Sabo-Etienne, Acc. Chem. Res. 2009, 42, 1640.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) G. Alcaraz, S. Sabo-Etienne, Angew. Chem. Int. Ed. 2010, 49, 7170.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  For an early spectroscopic report examining aminoborane interactions with transition metals see: G. Schmid, Chem. Ber. 1970, 103, 528.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXnsVahtQ%3D%3D&md5=fd7e575f24ad6c0c17ae0268fe50d397CAS |

[5]  (a) For previous reports of κ2-coordinated aminoboranes, see: G. Alcaraz, L. Vendier, E. Clot, S. Sabo-Etienne, Angew. Chem. Int. Ed. 2010, 49, 918.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGmsb4%3D&md5=30f9b684b4ac0b21239362211e7f41afCAS |
      (b) C. Y. Tang, A. L. Thompson, S. Aldridge, Angew. Chem. Int. Ed. 2010, 49, 921.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. A. Esteruelas, F. J. Fernandez-Alvarez, A. M. Lopez, M. Mora, E. Onate, J. Am. Chem. Soc. 2010, 132, 5600.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. Y. Tang, A. L. Thompson, S. Aldridge, J. Am. Chem. Soc. 2010, 132, 10578.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) G. Alcaraz, A. B. Chaplin, C. J. Stevens, E. Clot, L. Vendier, A. S. Weller, S. Sabo-Etienne, Organometallics 2010, 29, 5591.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) C. J. Stevens, R. Dallanegra, A. B. Chaplin, A. S. Weller, S. A. Macgregor, B. Ward, D. McKay, G. Alcaraz, S. Sabo-Etienne, Chem. – Eur. J. 2011, 17, 3011.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) G. Bénac-Lestrille, U. Helmstedt, L. Vendier, G. Alcaraz, E. Clot, S. Sabo-Etienne, Inorg. Chem. 2011, 50, 11039.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) C. Y. Tang, N. Phillips, J. I. Bates, A. L. Thompson, M. J. Gutmann, S. Aldridge, Chem. Commun. 2012, 48, 8096.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) C. Y. Tang, N. Phillips, M. J. Kelly, S. Aldridge, Chem. Commun. 2012, 48, 11999.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) For κ1-coordinated aminoboranes, see: D. Vidovic, D. A. Addy, T. Krämer, J. McGrady, S. Aldridge, J. Am. Chem. Soc. 2011, 133, 8494.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Gntrk%3D&md5=c77a631739f6dfa0b8f4fe6a94f5e039CAS | 21563831PubMed |
         (b) See also:Addy  D. A.Bates  J. I.Kelly  M. J.Riddlestone  I. M.Aldridge  S.Organometallics 2013 , 32 , 1583 which contains a preliminary report of part of this work (spectroscopic data for compound [2a][BArf4]).

[7]  G. Alcaraz, E. Clot, U. Helmstedt, L. Vendier, S. Sabo-Etienne, J. Am. Chem. Soc. 2007, 129, 8704.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvV2rsb4%3D&md5=dee9cd987301f972707cbe771d0d4099CAS | 17595092PubMed |

[8]  (a) K. D. Hesp, M. A. Rankin, R. McDonald, M. Stradiotto, Inorg. Chem. 2008, 47, 7471.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1Sguro%3D&md5=6e9a01931d08cc65b8de5791c74e09b9CAS | 18671344PubMed |
      (b) K. D. Hesp, F. O. Kannemann, M. A. Rankin, R. McDonald, M. J. Ferguson, M. Stradiotto, Inorg. Chem. 2011, 50, 2431.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) For other examples of ruthenium σ-borane complexes see: V. Montiel-Palma, M. Lumbierres, B. Donnadieu, S. Sabo-Etienne, B. Chaudret, J. Am. Chem. Soc. 2002, 124, 5624.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVKgt74%3D&md5=ad8569fe861ac05f93e59feffca10605CAS | 12010020PubMed |
      (b) S. Lachaize, K. Essalah, V. Montiel-Palma, L. Vendier, B. Chaudret, J.-C. Barthelat, S. Sabo-Etienne, Organometallics 2005, 24, 2935.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. Alcaraz, U. Helmstedt, E. Clot, L. Vendier, S. Sabo-Etienne, J. Am. Chem. Soc. 2008, 130, 12878.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Gloaguen, G. Alcaraz, L. Vendier, S. Sabo-Etienne, J. Organomet. Chem. 2009, 694, 2839.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. C. MacInnis, R. McDonald, M. J. Ferguson, S. Tobisch, L. Turculet, J. Am. Chem. Soc. 2011, 133, 13622.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Y. Gloaguen, G. Alcaraz, A. S. Petit, E. Clot, Y. Coppel, L. Vendier, S. Sabo-Etienne, J. Am. Chem. Soc. 2011, 133, 17232.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) See also: S. Bontemps, L. Vendier, S. Sabo-Etienne, Angew. Chem. Int. Ed. 2012, 51, 1671.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) H2BNiPr2: C. A. Jaska, K. Temple, A. J. Lough, I. Manners, J. Am. Chem. Soc. 2003, 125, 9424.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlOksrk%3D&md5=2164d1fc3a33fc39a087c9dbcc76108cCAS | 12889973PubMed |
      (b) H2BNCy2: L. Euzenat, D. Horhant, Y. Ribourdouille, C. Duriez, G. Alcaraz, M. Vaultier, Chem. Commun. 2003, 2280.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Cp*Ru(PCy3)Cl: T. Arliguie, C. Border, B. Chaudret, J. Devillers, R. Poilblanc, Organometallics 1989, 8, 1308.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Cp*Ru(PPh3)Cl: T. J. Johnson, K. Folting, W. E. Streib, J. D. Martin, J. C. Huffman, S. A. Jackson, O. Eisenstein, K. G. Caulton, Inorg. Chem. 1995, 34, 488.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Cp*Ru(IMes)Cl: W. Baratta, W. A. Herrmann, P. Rigo, J. Schwarz, J. Organomet. Chem. 2000, 593-594, 489.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Na[BArf4]: D. L. Reger, T. D. Wright, C. A. Little, J. J. S. Lamba, M. D. Smith, Inorg. Chem. 2001, 40, 3810.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) J. Cosier, A. M. Glazer, J. Appl. Cryst. 1986, 19, 105.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsF2qurY%3D&md5=42479b887e5ae0d156caebd226eb1ba8CAS |
         (b) Z. Otwinowski, W. Minor, in Methods in Enzymology (Eds C. W. Carter, R. M. Sweet) 1996, Vol. 276, pp. 307–332 (Academic Press: New York, NY).
      (c) A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Cryst. 1994, 27, 435.
      (d) P. W. Betteridge, J. R. Carruthers, R. I. Cooper, J. Prout, D. J. Watkin, J. Appl. Cryst. 2003, 36, 1487.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) G. te Velde, F. M. Bickelhaupt, S. J. A. van Gisbergen, C. Fonseca Guerra, E. J. Baerends, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlGntrw%3D&md5=a7f1b78ca0435f2616504223f0e684c8CAS |
      (b) C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, Theor. Chem. Acc. 1998, 99, 391.
         (c) E. J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, S. Gusarov, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, J. W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M. V. Krykunov, E. van Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, J. I. Rodríguez, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev, ADF2012 2012 (SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam). Available at http://www.scm.com (see Supplementary Material for full citation).
      (d) A. D. Becke, Phys. Rev. A 1988, 38, 3098.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. P. Perdew, Phys. Rev. B 1986, 33, 8822.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. G. Snijders, P. Vernooijs, E. J. Baerends, At. Data Nucl. Data Tables 1981, 26, 483.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) A. Rosa, A. W. Ehlers, E. J. Baerends, J. G. Snijders, G. te Velde, J. Phys. Chem. 1996, 100, 5690.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
         | Crossref | GoogleScholarGoogle Scholar |
         (i) T. Clark, A Handbook of Computational Chemistry 1985 (Wiley: New York, NY).
      (j) M. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory Comput. 2009, 5, 962.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) G. Schreckenbach, T. Ziegler, J. Phys. Chem. 1995, 99, 606.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) G. Schreckenbach, T. Ziegler, Int. J. Quantum Chem. 1996, 60, 753.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) G. Schreckenbach, T. Ziegler, Int. J. Quantum Chem. 1997, 61, 899.
         | Crossref | GoogleScholarGoogle Scholar |
      (n) S. K. Wolff, T. Ziegler, J. Chem. Phys. 1998, 109, 895.
         | Crossref | GoogleScholarGoogle Scholar |
      (o) S. K. Wolff, T. Ziegler, E. van Lenthe, E. J. Baerends, J. Chem. Phys. 1999, 110, 7689.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  F. Zettler, H. Hess, Chem. Ber. 1975, 108, 2269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXltVKlu78%3D&md5=f01954050dd827c5c43d70d48cf7bd13CAS |

[14]  B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremandes, F. Barrigán, S. Alvarez, Dalton Trans. 2008, 2832.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFKrurY%3D&md5=8519ef94d6bb04ba68b99eda49a82c81CAS | 18478144PubMed |

[15]  Y. Kawano, M. Hashiva, M. Shimoi, Organometallics 2006, 25, 4420.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsV2gtr8%3D&md5=8d2f6cc97c78489a73f1c5af2e7c307eCAS |

[16]  B. G. Willis, K. F. Jensen, J. Phys. Chem. A 1998, 102, 2613.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitFWnt74%3D&md5=d656fb7b99fd5827bc493d06c3198472CAS |

[17]  For an example of ‘side-on’ binding of a phosphine borane at a late transition metal centre, see: A. Amgoune, S. Ladeira, K. Miqueu, D. Bourissou, J. Am. Chem. Soc. 2012, 134, 6560.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltFGjurk%3D&md5=459da4df4cfd53e56edfeb3571e0babeCAS | 22480251PubMed |

[18]  N. P. C. Westwood, N. H. Werstiuk, J. Am. Chem. Soc. 1986, 108, 891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XpvVOiuw%3D%3D&md5=7950797f07c283a84126cb059c8cb2b4CAS |

[19]  C. E. Erickson, F. C. Gunderloy, J. Org. Chem. 1959, 24, 1161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXivVWntg%3D%3D&md5=b51b1943ef0a5575ddeee7e7f2c08876CAS |

[20]  T. Arliguie, B. Chaudret, F. A. Jalon, A. Otero, J. A. Lopez, F. J. Lahoz, Organometallics 1991, 10, 1888.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktV2jtr8%3D&md5=252ad36b7ff1e7c10e79c1280f3a178aCAS |