Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Aluminium Complexes of a Sterically Demanding Bis(iminophosphorane)methandiide

Christian P. Sindlinger A B and Andreas Stasch B C
+ Author Affiliations
- Author Affiliations

A Institut für Anorganische Chemie, Auf der Morgenstelle 18, 72076 Tübingen, Germany.

B School of Chemistry, Monash University, PO Box 23, Melbourne, Vic. 3800, Australia.

C Corresponding author. Email: Andreas.Stasch@monash.edu

Australian Journal of Chemistry 66(10) 1219-1225 https://doi.org/10.1071/CH13229
Submitted: 1 May 2013  Accepted: 30 May 2013   Published: 27 June 2013

Abstract

The reaction of the sterically demanding bis(iminophosphorane)methane, {DipN=P(Ph2)}2CH2, H2L 1 (where Dip = 2,6-iPr2C6H3), with one or two equivalents of AlMe3 in toluene under varying conditions led to the methanide complex [HLAlMe2] 4, and the methandiide complex [L(AlMe2)2] 5, respectively. Iterative iodination of complex 5 with I2 in toluene yielded the complexes [L(AlMeI)2] 6 and [L(AlI2)2] 7. The complexes 47 were structurally characterised. The methanide 4 forms a puckered six-membered ring without Al-C(methanide) contact and the complexes 5 and 6 show coordination of the methandiide ligand to two Al atoms forming two four-membered rings on the central spirocyclic carbon centre. Complex 7 shows an asymmetric coordination mode of the two Al centres to the methandiide ligand in the solid state with an almost planar, severely distorted three-coordinate methandiide carbon atom and only one short Al–C bond.


References

[1]  (a) For recent reviews see: T. Chivers, J. Konu, R. Thirumoorthi, Dalton Trans. 2012, 41, 4283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFertrk%3D&md5=db8e446ea066140f7f0cbe518f2e0d6bCAS | 22392260PubMed |
      (b) S. Harder, Coord. Chem. Rev. 2011, 255, 1252.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. T. Liddle, D. P. Mills, A. J. Wooles, Chem. Soc. Rev. 2011, 40, 2164.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. T. Liddle, D. P. Mills, A. J. Wooles, Organomet. Chem. 2010, 36, 29.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) T. K. Panda, P. W. Roesky, Chem. Soc. Rev. 2009, 38, 2782.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) T. Cantat, N. Mézailles, A. Auffant, P. Le Floch, Dalton Trans. 2008, 1957.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. Doux, O. Piechaczyk, T. Cantat, N. Mezailles, P. Le Floch, C. R. Chim. 2007, 10, 573.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) K. Izod, Coord. Chem. Rev. 2002, 227, 153.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) R. G. Cavell, R. P. K. Babu, K. Aparna, J. Organomet. Chem. 2001, 617–618, 158.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) R. G. Cavell, Curr. Sci. 2000, 78, 440.

[2]  S. Schulz, S. Gondzik, D. Schuchmann, U. Westphal, L. Dobrzycki, R. Boese, S. Harder, Chem. Commun. 2010, 46, 7757.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Omtr%2FP&md5=444e33c5afd219d6703946e268879affCAS |

[3]  M. S. Hill, P. B. Hitchcock, S. M. A. Karagouni, J. Organomet. Chem. 2004, 689, 722.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKnurw%3D&md5=ba6fd3615359f36e35b9a9b90e1c7d80CAS |

[4]  R. G. Cavell, K. Aparna, R. P. K. Babu, Q. Wang, J. Mol. Catal. Chem. 2002, 189, 137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntVGksbo%3D&md5=bc04fac77ee04ec5dfefbc95267a1b1fCAS |

[5]  K. Aparna, R. McDonald, R. G. Cavell, J. Am. Chem. Soc. 2000, 122, 9314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtlaltbY%3D&md5=356d2b7abc01aa509ee72fa5b306fca0CAS |

[6]  K. Aparna, R. McDonald, M. Ferguson, R. G. Cavell, Organometallics 1999, 18, 4241.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVGhsL8%3D&md5=f8f9c126acefdde45652ebd4265b20e9CAS |

[7]  C. M. Ong, P. McKarns, D. W. Stephan, Organometallics 1999, 18, 4197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslChurs%3D&md5=e2b07c224437eb86f9ebf56f771541b6CAS |

[8]  W.-P. Leung, C.-L. Wan, T. C. W. Mak, Organometallics 2010, 29, 1622.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVChtbs%3D&md5=8a74f8dedace64d99e2c84b8c3a2f1e2CAS |

[9]  J. Guo, J.-S. Lee, M.-C. Foo, K.-C. Lau, H.-W. Xi, K. H. Lim, C.-W. So, Organometallics 2010, 29, 939.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosFymsQ%3D%3D&md5=af185325ace13b907eae4b54049549ecCAS |

[10]  R. Nassar, B. C. Noll, K. W. Henderson, Acta Crystallogr. E 2004, 60, m1023.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Gkur4%3D&md5=75a016347be3c6a741e99a40dfc2aedbCAS |

[11]  Z.-X. Wang, Y.-X. Li, Organometallics 2003, 22, 4900.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot12qt7s%3D&md5=62661053e0c2bcb0d1e63bcae6e4c7b9CAS |

[12]  B. Lee, S. A. Sangakoya, W. T. Pennington, G. H. Robinson, J. Coord. Chem. 1990, 21, 99.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvFOlt7c%3D&md5=7472fc901306181fa3c15e636a7ac7c3CAS |

[13]  M. F. Self, B. Lee, S. A. Sangakoya, W. T. Pennington, G. H. Robinson, Polyhedron 1990, 9, 313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksF2htLY%3D&md5=1897d121f23b5806479390fdc184a5b3CAS |

[14]  G. H. Robinson, B. Lee, W. T. Pennington, S. A. Sangakoya, J. Am. Chem. Soc. 1988, 110, 6260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlt12itLg%3D&md5=44dda1bc1bdca088e88a7b2b5ebc8f86CAS | 22148819PubMed |

[15]  G. H. Robinson, M. F. Self, W. T. Pennington, S. A. Sangakoya, Organometallics 1988, 7, 2424.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlWisL4%3D&md5=da780d50d6e4ddde776c48eec10ebf2dCAS |

[16]  (a) A. Stasch, C. Jones, Dalton Trans. 2011, 40, 5659.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVagtb4%3D&md5=3f4f1def9c243e2ebb1e98c1280db8c9CAS | 21390353PubMed |
      (b) S. P. Green, C. Jones, A. Stasch, Science 2007, 318, 1754.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  S. J. Bonyhady, C. Jones, S. Nembenna, A. Stasch, A. J. Edwards, G. J. McIntyre, Chem. – Eur. J. 2010, 16, 938.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Gnuw%3D%3D&md5=cfc41102c3c740b451dc5af4a8ba62d3CAS | 19950340PubMed |

[18]  S. Al-Benna, M. J. Sarsfield, M. Thornton-Pett, D. L. Ormsby, P. J. Maddox, P. Bres, M. Bochmann, J. Chem. Soc., Dalton Trans. 2000, 4247.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFaksro%3D&md5=ed13abefc544b4615a37d2541413bb09CAS |

[19]  G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
         | Crossref | GoogleScholarGoogle Scholar |